
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

FEATURES

- Low "ON" resistance: 80Ω (typ.) at V_{CC} - V_{EE} = 4.5 V 70Ω (typ.) at V_{CC} - V_{EE} = 6.0 V 60Ω (typ.) at V_{CC} - V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4053 are high-speed Si-gate CMOS devices and are pin compatible with the "4053" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

The 74HC/HCT4053 are triple 2-channel analog multiplexers/demultiplexers with a common enable input (\overline{E}) . Each multiplexer/demultiplexer has two independent inputs/outputs (nY₀ and nY₁), a common input/output (nZ) and three digital select inputs (S₁ to S₃).

With \overline{E} LOW, one of the two switches is selected (low impedance ON-state) by S₁ to S₃. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S₁ to S₃.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S₁, to S₃, and \overline{E}). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY₀ and nY₁, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC} - V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

CVMDOI		CONDITIONS	TYP		
SYMBOL	PARAMETER	CONDITIONS	НС	нст	
t _{PZH} / t _{PZL}	turn "ON" time	C_L = 15 pF; R_L = 1 kΩ; V_{CC} = 5 V			
	Ē to V _{OS}		17	23	ns
	S _n to V _{OS}		21	21	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time				
	\overline{E} to V _{OS}		18	20	ns
	S _n to V _{OS}		17	19	ns
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	36	36	pF
C _S	max. switch capacitance				
	independent (Y)		5	5	pF
	common (Z)		8	8	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \sum \{(C_{L} + C_{S}) \times V_{CC}^{2} \times f_{o}\} \text{ where:}$

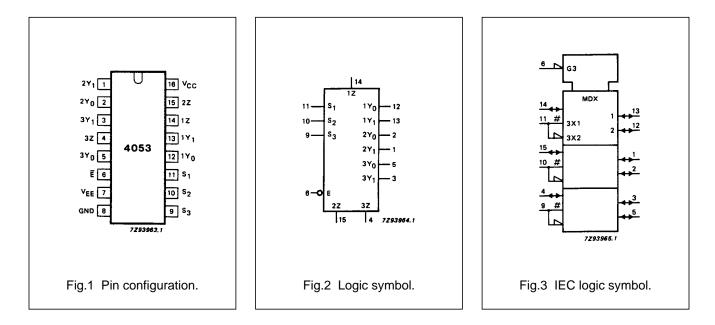
 f_i = input frequency in MHz; f_o = output frequency in MHz

 $\Sigma \{(C_L+C_S) \times V_{CC}^2 \times f_o\} = sum of outputs$

 C_L = output load capacitance in pF; C_S = max. switch capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_1 = GND$ to V_{CC} For HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V


74HC/HCT4053

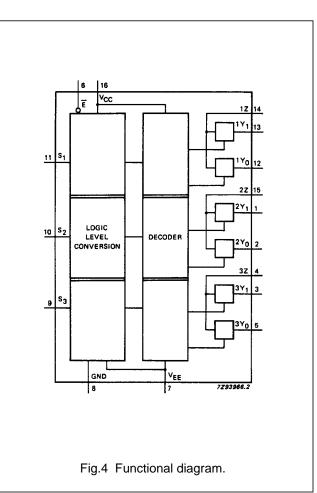
ORDERING INFORMATION

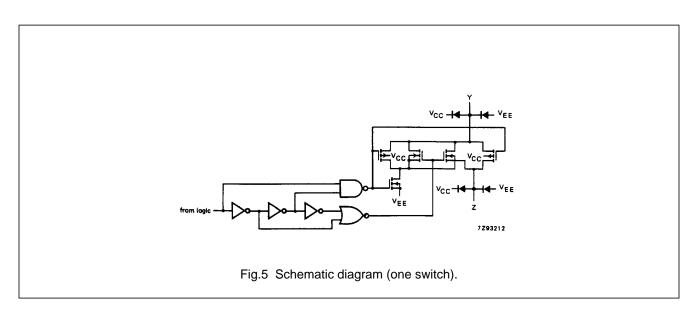
See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 1	2Y ₀ to, 2Y ₁	independent inputs/outputs
5, 3	3Y ₀ to, 3Y ₁	independent inputs/outputs
6	Ē	enable input (active LOW)
7	V _{EE}	negative supply voltage
8	GND	ground (0 V)
11, 10, 9	S ₁ to S ₃	select inputs
12, 13	1Y ₀ , 1Y ₁	independent inputs/outputs
14, 15, 4	1Z to 3Z	common inputs/outputs
16	V _{CC}	positive supply voltage

APPLICATIONS


- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating


FUNCTION TABLE

INPU	JTS						
Ē	Sn	CHANNEL ON					
L	L	nY ₀ – nZ					
L	Н	nY1 – nZ					
н	X	none					

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

74HC/HCT4053

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for V _I < –0.5 V or V _I > V _{CC} + 0.5 V
±I _{SK}	DC switch diode current		20	mA	for V _S < –0.5 V or V _S > V _{CC} + 0.5 V
±ls	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±IEE	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to + 125 °C 74HC/HCT
	plastic DIL		750	mW	above + 70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above + 70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC	;		74H0	СТ		CONDITIONS	
STINDUL		min.	typ.	max.	min.	typ.	max.		CONDITIONS	
V _{CC}	DC supply voltage V _{CC} –GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7	
V _{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7	
VI	DC input voltage range	GND		V _{CC}	GND		V _{CC}	V		
V _S	DC switch voltage range	V _{EE}		V _{CC}	V _{EE}		V _{CC}	V		
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC	
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS	
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$ $V_{CC} = 10.0 V$	

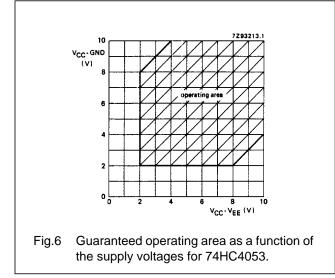
74HC/HCT4053

Z93214.

V_{CC}·V_{EE} (V)

Guaranteed operating area as a function

of the supply voltages for 74HCT4053.


V_{CC}-GND

(V)

3

0

Fig.7

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

					T _{amb}	(°C)				TEST CONDITIONS					
				7	74HC/	нст]						
SYMBOL	PARAMETER	+ 25		-40 to +85		–40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	Ι _S (μΑ)	V _{is}	VI		
		min.	typ.	max.	min.	max.	min.	max.	1						
R _{ON}	ON resistance (peak)		- 100 90 70	- 180 160 130		- 225 200 165		- 270 240 195	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	V _{IH} or V _{IL}	
R _{ON}	ON resistance (rail)		150 80 70 60	- 140 120 105		- 175 150 130		- 210 180 160	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{EE}	V _{IH} or V _{IL}	
R _{ON}	ON resistance (rail)		150 90 80 65	- 160 140 120		- 200 175 150		- 240 210 180	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC}	V _{IH} or V _{IL}	
ΔR _{ON}	maximum ∆ON resistance between any two channels		- 9 8 6						Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5		V _{CC} to V _{EE}	V _{IH} or V _{IL}	

Notes to the characteristics

- At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

74HC/HCT4053

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°C)				TEST CONDITIONS				
					74H	C								
SYMBOL	PARAMETER	+25			-40	-40 to +85 -40		-40 to +125		V _{CC} V	V _{EE} V	VI	OTHER	
		min.	typ.	max.	min.	max.	min.	max.						
VIH	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0				
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0				
±lı	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μA	6.0 10.0	0 0	V _{CC} or GND		
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)	
±ls	analog switch OFF-state current all channels			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S =$ $V_{CC} - V_{EE}$ (see Fig.10)	
±ls	analog switch ON-state current			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)	
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μA	6.0 10.0	0 0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}	

74HC/HCT4053

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (° C)				т	EST C	ONDITIONS
					74H0	2			<u>-</u>			
SYMBOL	PARAMETER		+25		- 40 t	io +85	-40 to	o +125	UNIT	V _{CC} (V)	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		15 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time Ē to V _{os}		60 20 16 15	220 44 37 31		275 55 47 39		330 66 56 47	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		75 25 20 15	220 44 37 31		275 55 47 39		330 66 56 47	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E} to V_{os}		63 21 17 15	210 42 36 29		265 53 45 36		315 63 54 44	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time S_n to V_{os}		60 20 16 15	210 42 36 29		265 53 45 36		315 63 54 44	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)

74HC/HCT4053

DC CHARACTERISTICS FOR 74HCT

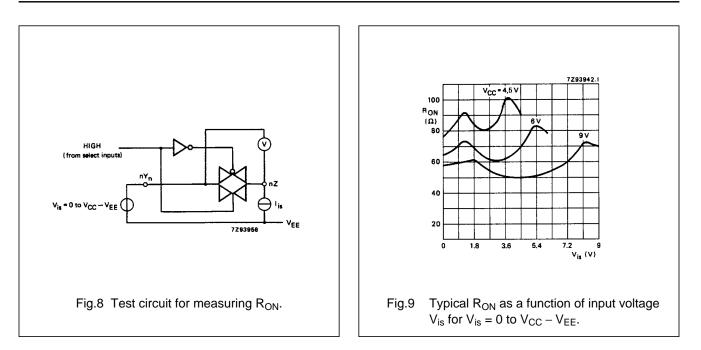
Voltages are referenced to GND (ground = 0 V)

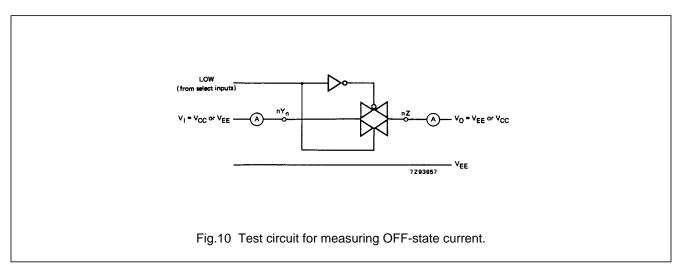
					T _{amb} (°C)				1	TEST CONDITIONS					
OVMBOL					74HC	т	1			v	V	v	OTUED			
SYMBOL	PARAMETER		+25		-40 t	–40 to +85		-40 to +125		V _{CC} (V)	V _{EE} (V)	VI	OTHER			
		min.	typ.	max.	min.	max.	min.	max.								
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5						
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5						
±lı	input leakage current			0.1		1.0		1.0	μA	5.5	0	V _{CC} or GND				
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S =$ $V_{CC} - V_{EE}$ Fig.10			
±I _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	$\begin{vmatrix} V_{S} \\ V_{CC} - V_{EE} \\ Fig. 10 \end{vmatrix}$			
±ls	analog switch ON-state current			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} – V _{EE} Fig.11			
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μA	5.5 5.0	0 -5.0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}			
ΔI _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μA	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND			

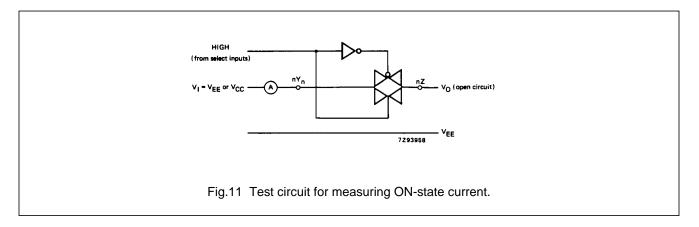
Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
Sn	0.50
Ē	0.50


Product specification


74HC/HCT4053


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				TEST CONDITIONS			
					74HC	т							
SYMBOL	PARAMETER	+25		−40 to +85		-40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	OTHER		
		min.	typ.	max.	min.	max.	min.	max.					
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	R _L = ∞; C _L = 50 pF (see Fig.18)	
t _{PZH} / t _{PZL}	turn "ON" time \overline{E} to V_{os}		27 16	48 34		60 43		72 51	ns	4.5 4.5	0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)	
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		25 16	48 34		60 43		72 51	ns	4.5 4.5	0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)	
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E} to V_{os}		24 15	44 31		55 39		66 47	ns	4.5 4.5	0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)	
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		22 15	44 31		55 39		66 47	ns	4.5 4.5	0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Figs 19, 20 and 21)	

74HC/HCT4053

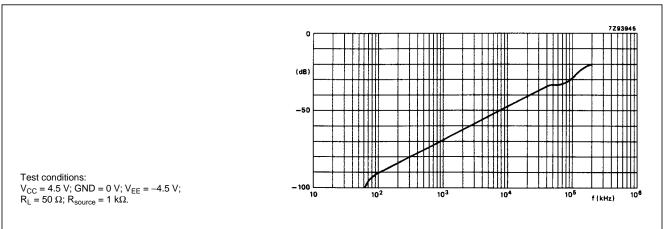
ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

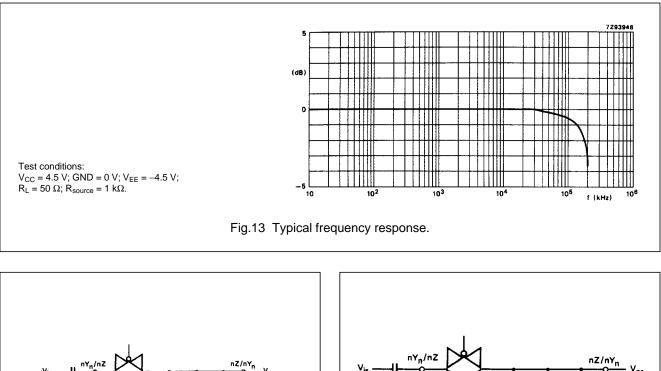
 $GND = 0 V; T_{amb} = 25 °C$

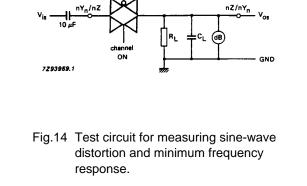
SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$\label{eq:RL} \begin{array}{l} R_L = 600 \; \Omega; \; C_L = 50 \; pF \\ f = 1 \; MHz \; see \; (Fig.12 \; and \; 15) \end{array}$
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$\label{eq:relation} \begin{split} R_L &= 600 \; \Omega; \; C_L = 50 \; pF; \\ f &= 1 \; MHz \; (see Fig.16) \end{split}$
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$ \begin{array}{l} R_L = 600 \; k\Omega; \; C_L = 50 \; pF; \\ f = 1 \; MHz \; (\overline{E} \; or \; S_n, \\ square-wave \; between \; V_{CC} \\ and \; GND, \; t_r = t_f = 6 \; ns \\ (see \; Fig. 17) \end{array} $
f _{max}	minimum frequency response (–3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Fig.13 and 14)
C _S	maximum switch capacitance independent (Y) common (Z)	5 8	pF pF				

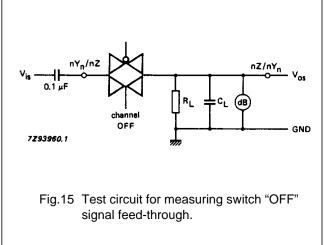
Notes to the AC characteristics

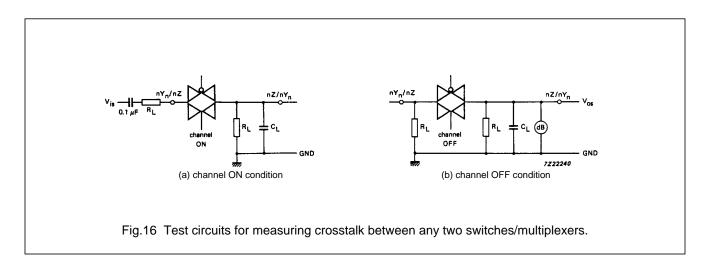

1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).

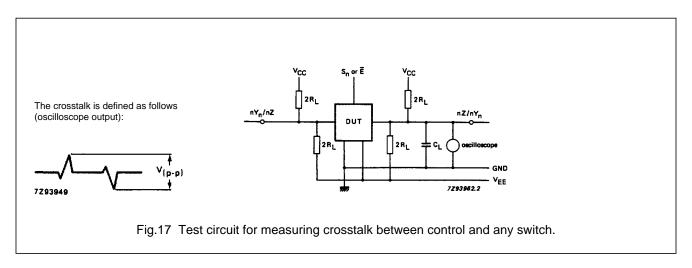
2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω).

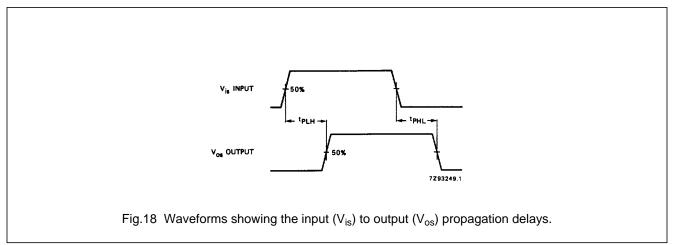

General note

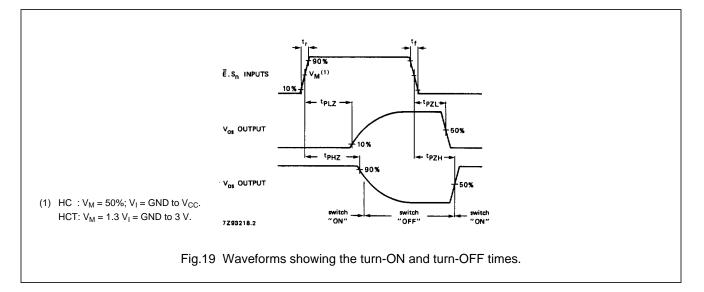

 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input.


 V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output



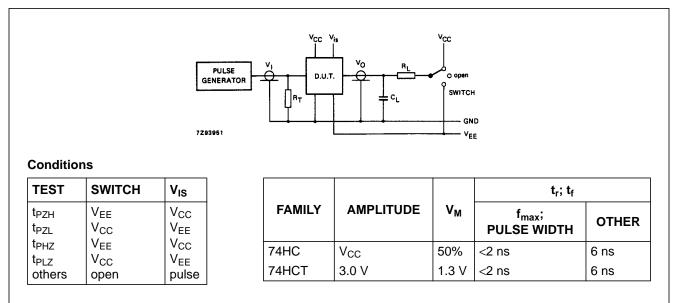






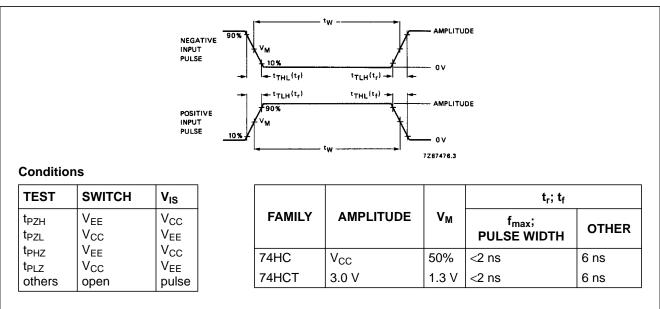
Product specification

74HC/HCT4053


AC WAVEFORMS

74HC/HCT4053

TEST CIRCUIT AND WAVEFORMS



C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 t_{r} = t_{f} = 6 ns; when measuring $f_{max},$ there is no constraint to $t_{r},\,t_{f}$ with 50% duty factor.

Fig.20 Test circuit for measuring AC performance.

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_{T} = termination resistance should be equal to the output impedance Z_{D} of the pulse generator.

 t_{r} = t_{f} = 6 ns; when measuring $f_{max},$ there is no constraint to $t_{r},\,t_{f}$ with 50% duty factor.

Fig.21 Input pulse definitions.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".