
1.5 A, Step-Up/Down/ Inverting Switching Regulators

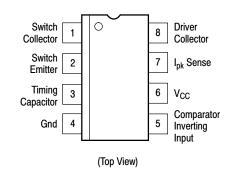
The MC34063A Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.

- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference

This device contains 51 active transistors.

Figure 1. Representative Schematic Diagram

http://onsemi.com



PDIP-8 P, P1 SUFFIX CASE 626

SO-8 D SUFFIX CASE 751

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 11 of this data sheet.

MAXIMUM RATINGS

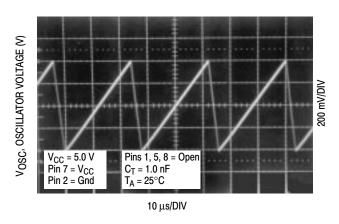
Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	40	Vdc
Comparator Input Voltage Range	V _{IR}	-0.3 to +40	Vdc
Switch Collector Voltage	V _{C(switch)}	40	Vdc
Switch Emitter Voltage (V _{Pin 1} = 40 V)	V _{E(switch)}	40	Vdc
Switch Collector to Emitter Voltage	V _{CE(switch)}	40	Vdc
Driver Collector Voltage	V _{C(driver)}	40	Vdc
Driver Collector Current (Note 1)	I _{C(driver)}	100	mA
Switch Current	I _{SW}	1.5	Α
Power Dissipation and Thermal Characteristics Plastic Package, P, P1 Suffix $T_A = 25^{\circ}C$ Thermal Resistance SOIC Package, D Suffix $T_A = 25^{\circ}C$ Thermal Resistance	P _D R _{θJA} P _D R _{θJA}	1.25 100 625 160	W °C/W mW °C/W
Operating Junction Temperature	TJ	+150	°C
Operating Ambient Temperature Range MC34063A MC33063AV, NCV33063A MC33063A	T _A	0 to +70 -40 to +125 -40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Maximum package power dissipation limits must be observed.
 ESD data available upon request.
 NCV prefix is for automotive and other applications requiring site and change control.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = T_{low}$ to T_{high} [Note 4], unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit	
OSCILLATOR						
Frequency ($V_{Pin 5} = 0 \text{ V}, C_{T} = 1.0 \text{ nF}, T_{A} = 25^{\circ}\text{C}$)	f _{osc}	24	33	42	kHz	
Charge Current (V _{CC} = 5.0 V to 40 V, T _A = 25°C)	I _{chg}	24	35	42	μΑ	
Discharge Current (V _{CC} = 5.0 V to 40 V, T _A = 25°C)	I _{dischg}	140	220	260	μА	
Discharge to Charge Current Ratio (Pin 7 to V _{CC} , T _A = 25°C)	I _{dischg} /I _{chg}	5.2	6.5	7.5	_	
Current Limit Sense Voltage (I _{chg} = I _{dischg} , T _A = 25°C)	V _{ipk(sense)}	250	300	350	mV	
OUTPUT SWITCH (Note 5)	•	•		•		
Saturation Voltage, Darlington Connection (I _{SW} = 1.0 A, Pins 1, 8 connected)	V _{CE(sat)}	_	1.0	1.3	V	
Saturation Voltage (Note 6) (I _{SW} = 1.0 A, R _{Pin 8} = 82 Ω to V _{CC} , Forced $\beta \simeq 20$)	V _{CE(sat)}	-	0.45	0.7	V	
DC Current Gain (I _{SW} = 1.0 A, V _{CE} = 5.0 V, T _A = 25°C)	h _{FE}	50	75	_	_	
Collector Off–State Current (V _{CE} = 40 V)	I _{C(off)}	_	0.01	100	μΑ	
COMPARATOR	<u> </u>					
Threshold Voltage $T_{A} = 25^{\circ}C$ $T_{A} = T_{low} \text{ to } T_{high}$	V _{th}	1.225 1.21	1.25 –	1.275 1.29	V	
Threshold Voltage Line Regulation (V _{CC} = 3.0 V to 40 V) MC33063A, MC34063A MC33063AV, NCV33063A	Reg _{line}	_ _	1.4 1.4	5.0 6.0	mV	
Input Bias Current (V _{in} = 0 V)	I _{IB}	_	-20	-400	nA	
TOTAL DEVICE						
Supply Current (V_{CC} = 5.0 V to 40 V, C_T = 1.0 nF, Pin 7 = V_{CC} , $V_{Pin 5}$ > V_{th} , Pin 2 = Gnd, remaining pins open)	Icc	_	-	4.0	mA	

 ^{4.} T_{low} = 0°C for MC34063A, -40°C for MC33063A, AV, NCV33063A
 T_{high} = +70°C for MC34063A, +85°C for MC33063A, +125°C for MC33063AV, NCV33063A
 5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.


Forced
$$\beta$$
 of output switch :
$$\frac{IC \text{ output}}{IC \text{ driver} - 7.0 \text{ mA}^*} \ge 10$$

If the output switch is driven into hard saturation (non–Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 µs for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

^{*} The 100 Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

Figure 2. Output Switch On-Off Time versus Oscillator Timing Capacitor

Figure 3. Timing Capacitor Waveform

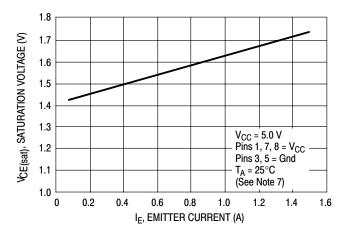


Figure 4. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current

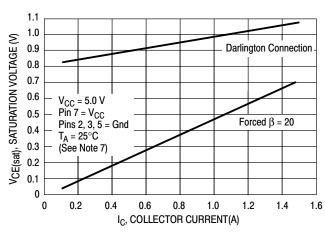


Figure 5. Common Emitter Configuration Output Switch Saturation Voltage versus Collector Current

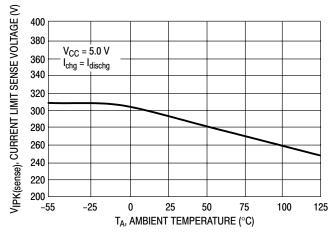


Figure 6. Current Limit Sense Voltage versus Temperature

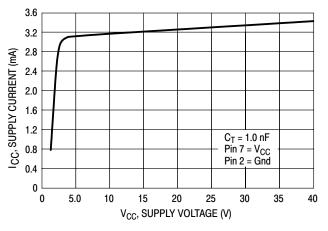
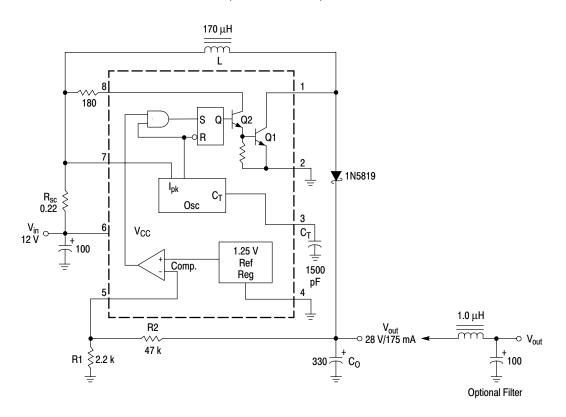



Figure 7. Standby Supply Current versus Supply Voltage

7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Test	Test Conditions	
Line Regulation	V _{in} = 8.0 V to 16 V, I _O = 175 mA	30 mV = ±0.05%
Load Regulation	V _{in} = 12 V, I _O = 75 mA to 175 mA	10 mV = ±0.017%
Output Ripple	V _{in} = 12 V, I _O = 175 mA	400 mVpp
Efficiency	V _{in} = 12 V, I _O = 175 mA	87.7%
Output Ripple With Optional Filter	V _{in} = 12 V, I _O = 175 mA	40 mVpp

Figure 8. Step-Up Converter

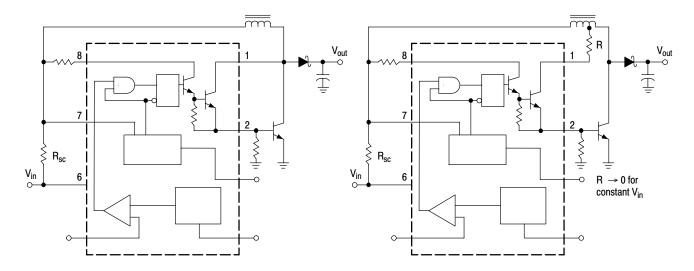
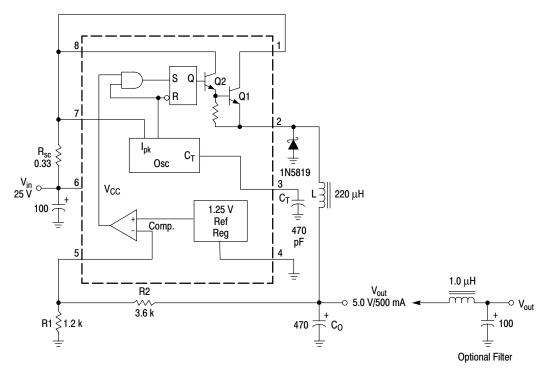



Figure 9. External Current Boost Connections for I_C Peak Greater than 1.5 A

9a. External NPN Switch

9b. External NPN Saturated Switch (See Note 8)

8. If the output switch is driven into hard saturation (non–Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 μs to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non–Darlington configuration is used, the following output drive condition is recommended.

Test	Conditions	Results
Line Regulation	$V_{in} = 15 \text{ V to } 25 \text{ V, } I_{O} = 500 \text{ mA}$	12 mV = ±0.12%
Load Regulation	$V_{in} = 25 \text{ V}, I_{O} = 50 \text{ mA to } 500 \text{ mA}$	3.0 mV = ±0.03%
Output Ripple	V _{in} = 25 V, I _O = 500 mA	120 mVpp
Short Circuit Current	V_{in} = 25 V, R_L = 0.1 Ω	1.1 A
Efficiency	V _{in} = 25 V, I _O = 500 mA	83.7%
Output Ripple With Optional Filter	V _{in} = 25 V, I _O = 500 mA	40 mVpp

Figure 10. Step-Down Converter

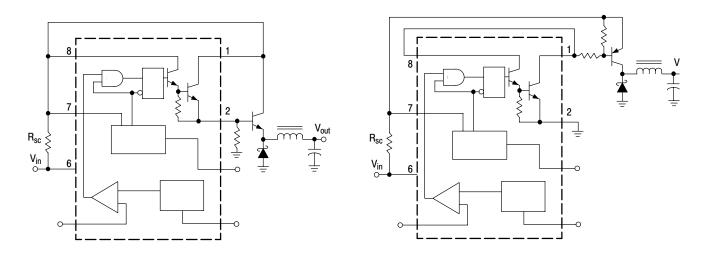
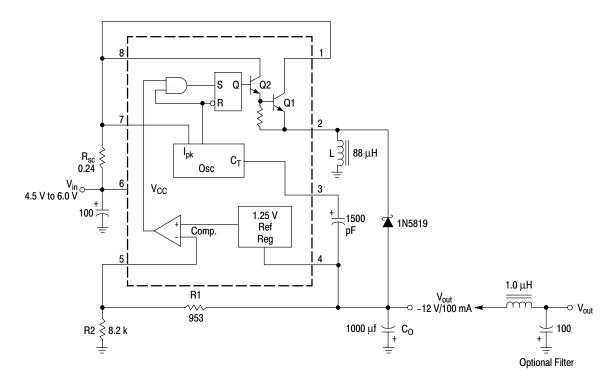



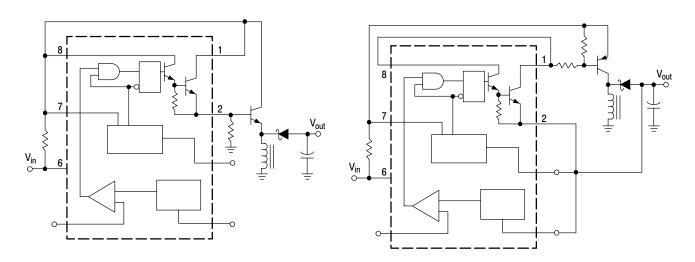
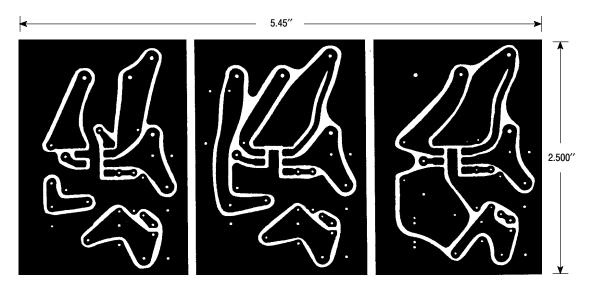
Figure 11. External Current Boost Connections for $I_{\mbox{\scriptsize C}}$ Peak Greater than 1.5 A

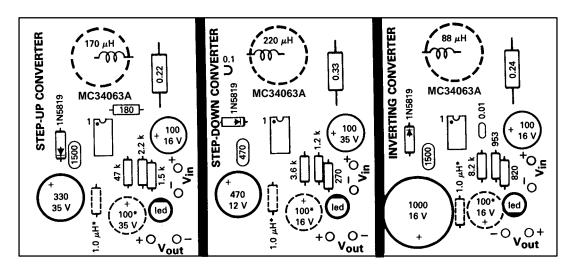
11a. External NPN Switch

11b. External PNP Saturated Switch

Test	Conditions	Results
Line Regulation	$V_{in} = 4.5 \text{ V to } 6.0 \text{ V}, I_{O} = 100 \text{ mA}$	$3.0 \text{ mV} = \pm 0.012\%$
Load Regulation	$V_{in} = 5.0 \text{ V}, I_O = 10 \text{ mA to } 100 \text{ mA}$	0.022 V = ±0.09%
Output Ripple	V _{in} = 5.0 V, I _O = 100 mA	500 mVpp
Short Circuit Current	$V_{in} = 5.0 \text{ V}, R_L = 0.1 \Omega$	910 mA
Efficiency	V _{in} = 5.0 V, I _O = 100 mA	62.2%
Output Ripple With Optional Filter	V _{in} = 5.0 V, I _O = 100 mA	70 mVpp

Figure 12. Voltage Inverting Converter


Figure 13. External Current Boost Connections for I_C Peak Greater than 1.5 A

13a. External NPN Switch

13b. External PNP Saturated Switch

(Top view, copper foil as seen through the board from the component side)

(Top View, Component Side)

*Optional Filter.

Figure 14. Printed Circuit Board and Component Layout

(Circuits of Figures 8, 10, 12)

INDUCTOR DATA

Converter	Inductance (μH)	Turns/Wire
Step-Up	170	38 Turns of #22 AWG
Step-Down	220	48 Turns of #22 AWG
Voltage-Inverting	88	28 Turns of #22 AWG

All inductors are wound on Magnetics Inc. 55117 toroidal core.

Calculation	Step-Up	Step-Down	Voltage-Inverting
t _{on} /t _{off}	$\frac{V_{\text{out}} + V_{\text{F}} - V_{\text{in(min)}}}{V_{\text{in(min)}} - V_{\text{sat}}}$	$\frac{V_{\text{out}} + V_{\text{F}}}{V_{\text{in(min)}} - V_{\text{sat}} - V_{\text{out}}}$	$\frac{ V_{out} + V_{F}}{V_{in} - V_{sat}}$
(t _{on} + t _{off})	1 f	<u>1</u> f	<u>1</u> f
t _{off}	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}} + 1}$	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}} + 1}$	$\frac{\frac{t_{ON} + t_{Off}}{t_{Off}}}{\frac{t_{ON}}{t_{Off}} + 1}$
t _{on}	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$
C _T	4.0 x 10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}	$4.0 \times 10^{-5} t_{on}$
I _{pk(switch)}	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}} + 1\right)$	^{2l} out(max)	$2I_{out(max)} \left(\frac{t_{on}}{t_{off}} + 1\right)$
R _{sc}	0.3/I _{pk(switch)}	0.3/I _{pk(switch)}	0.3/I _{pk(switch)}
L _(min)	$\left(\frac{(V_{in(min)} - V_{sat})}{I_{pk(switch)}}\right)^{t} on(max)$	$\left(\frac{(V_{\text{in(min)}} - V_{\text{sat}} - V_{\text{out}})}{I_{\text{pk(switch)}}}\right) t_{\text{on(max)}}$	$\left(\frac{(V_{\text{in(min)}} - V_{\text{sat}})}{I_{\text{pk(switch)}}}\right)^{t_{\text{on(max)}}}$
Co	9 \frac{I_{out}^ton}{V_{ripple(pp)}}	$\frac{I_{pk(switch)}^{(t_{on} + t_{off})}}{^{8V}_{ripple(pp)}}$	9 $\frac{I_{out}t_{on}}{V_{ripple(pp)}}$

V_{sat} = Saturation voltage of the output switch.

The following power supply characteristics must be chosen:

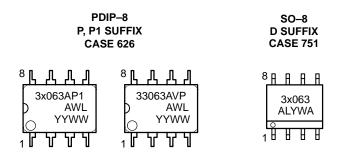
V_{in} – Nominal input voltage.

 V_{in} – Nominal input voltage. V_{out} – Desired output voltage, $|V_{out}| = 1.25 \left(1 + \frac{R2}{R1}\right)$ I_{out} – Desired output current. I_{min} – Minimum desired output switching frequency at the selected values of V_{in} and I_{O} .

NOTE: For further information refer to Application Note AN920A/D and AN954/D.

Figure 15. Design Formula Table

 V_F = Forward voltage drop of the output rectifier.

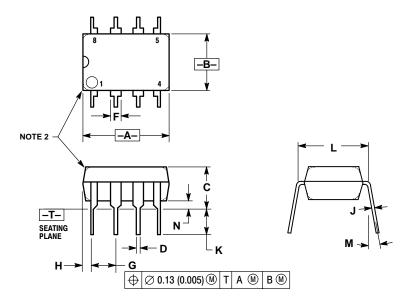

V_{ripple(pp)} – Desired peak–to–peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

ORDERING INFORMATION

Device	Package	Shipping
MC33063AD	SO-8	98 Units / Rail
MC33063ADR2	SO-8	2500 Units / Tape & Reel
MC33063AP1	DIP-8	50 Units / Rail
MC33063AVD	SO-8	98 Units / Rail
MC33063AVDR2	SO-8	2500 Units / Tape & Reel
NCV33063AVDR2*	SO-8	2500 Units / Tape & Reel
MC33063AVP	DIP-8	50 Units / Rail
MC34063AD	SO-8	98 Units / Rail
MC34063ADR2	SO-8	2500 Units / Tape & Reel
MC34063AP1	DIP-8	50 Units / Rail

^{*}NCV33063A: $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

MARKING DIAGRAMS

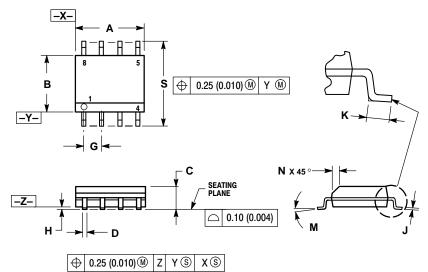

x = 3 or 4

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

PACKAGE DIMENSIONS

PDIP-8 P, P1 SUFFIX PLASTIC PACKAGE CASE 626-05 ISSUE L



- NOTES:
 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
С	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54	2.54 BSC		0.100 BSC	
Н	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300	BSC	
M		10°		10°	
N	0.76	1.01	0.030	0.040	

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC PACKAGE CASE 751-07 ISSUE W


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		MILLIMETERS INCI		HES
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

ON Semiconductor is a trademark and is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.