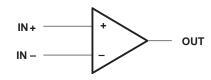
LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

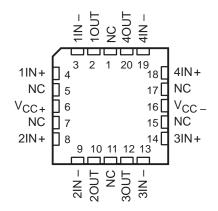
LM148...J PACKAGE

SLOS058B - OCTOBER 1979 - REVISED AUGUST 1996


- μA741 Operating Characteristics
- Low Supply Current Drain . . . 0.6 mA Typ (per amplifier)
- Low Input Offset Voltage
- Low Input Offset Current
- Class AB Output Stage
- Input/Output Overload Protection
- Designed to Be Interchangeable With National LM148, LM248, and LM348

description

The LM148, LM248, and LM348 are quadruple, independent, high-gain, internally compensated operational amplifiers designed to have operating characteristics similar to the μ A741. These amplifiers exhibit low supply current drain, and input bias and offset currents that are much less than those of the μ A741.


The LM148 is characterized for operation over the full military temperature range of -55° C to 125° C, the LM248 is characterized for operation from -25° C to 85° C, and the LM348 is characterized for operation from 0° C to 70° C.

symbol (each amplifier)

LM248, LM348 D, N, OR PW PACKAGE (TOP VIEW)										
10UT [1	14] 40UT							
1IN-[2	13] 4IN-							
1 IN+[3	12] 4IN+							
V _{CC+} [4	11] V _{CC -}							
2IN+[5	10] 3IN+							
2IN-[6	9] 3IN-							
20UT [7	8] 30UT							

LM148 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

AVAILABLE OPTIONS

				PACKAGE		
ТА	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	TSSOP (PW)
0°C to 70°C	6 mV	LM348D	—	_	LM348N	LM348PW
-25°C to 85°C	6 mV	LM248D	—	_	LM248N	—
-55°C to 125°C	5 mV	_	LM148FK	LM148J		_

The D package is available taped and reeled. Add the suffix R to the device type (e.g., LM348DR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

SLOS058B - OCTOBER 1979 - REVISED AUGUST 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LM148	LM248	LM348	UNIT		
Supply voltage, V _{CC+} (see Note 1)			18	18	V		
Supply voltage, V _{CC} (see Note 1)		-22	-18	-18	V		
Differential input voltage, VID (see Note 2)		44	36	36	V		
Input voltage, VI (either input, see Notes 1 and 3)			±18	±18	V		
Duration of output short circuit (see Note 4)			unlimited	unlimited			
Continuous total power dissipation			See Dissipation Rating Table				
Operating free-air temperature range, T _A			-25 to 85	0 to 70	°C		
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C		
Case temperature for 60 seconds	FK package	260			°C		
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J package	300			°C		
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, N, or PW package		260	260	°C		

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at IN+ with respect to IN-.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or the value specified in the table, whichever is less.

4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	900 mW	7.6 mW/°C	32°C	611 mW	497 mW	N/A
FK	900 mW	11.0 mW/°C	68°C	878 mW	713 mW	273 mW
J	900 mW	11.0 mW/°C	68°C	878 mW	713 mW	273 mW
N	900 mW	9.2 mW/°C	52°C	734 mW	596 mW	N/A
PW	700 mW	5.6 mW/°C	N/A	448 mW	N/A	N/A

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC+}	4	18	V
Supply voltage, V _{CC} _	-4	-18	V

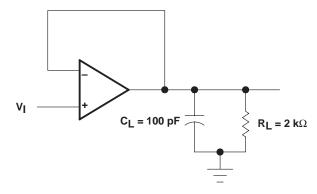
1	DADAMETED	1	···-+ /	LM148 LM248 LM348						LINUT			
l	PARAMETER	TEST CONDITIO	NST	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	in the start veltage	N= 0	25°C		1	5		1	6		1	6	
VIO	Input offset voltage	$V_{O} = 0$	Full range			6			7.5			7.5	mV
	Input offset current		25°C		4	25		4	50		4	50	nA
IO		V _O = 0	Full range			75			125			100	TIA.
	Input bias current	$V_{O} = 0$	25°C		30	100		30	200		30	200	nA
lΒ		vO = 0	Full range			325			500			400	
VICR	Common-mode input voltage range		Full range	±12			±12			±12			V
		RL = 10 kΩ	25°C	±12	±13		±12	±13		±12	±13	:13	
∨ом	Maximum peak output voltage	$R_L \ge 10 \ k\Omega$	Full range	±12			±12			±12			V
VOM	swing	$R_L = 2 k\Omega$	25°C	±10	±12		±10	±12		±10	±12		
L		$R_L \ge 2 k\Omega$	Full range	±10			±10			±10			
A _{VD}	Large-signal differential voltage	V _O = ±10 V,	25°C	50	160		25	160		25	160		V/m
~vD	amplification	$R_L = \ge 2 k\Omega$	Full range	25			15			15			v/iiiv
r _i	Input resistance [‡]		25°C	0.8	2.5		0.8	2.5		0.8	2.5		MΩ
B ₁	Unity-gain bandwidth	$A_{VD} = 1$	25°C		1			1			1		MH
φm	Phase margin	$A_{VD} = 1$	25°C		60°			60°			60°		
CMRR	Common-mode rejection ratio	VIC = VICRmin,	25°C	70	90		70	90		70	90		dB
Civil XIX		$V_{O} = 0$	Full range	70			70			70			42
k _{SVR}	Supply-voltage rejection ratio	$V_{CC\pm} = \pm 9 V \text{ to } \pm 15 V,$	25°C	77	96		77	96		77	96		dB
"SVK	$(\Delta \Lambda CC\mp / \nabla \Lambda IO)$	VO = 0	Full range	77			77			77			
los	Short-circuit output current	<u> </u>	25°C		±25			±25		_	±25		mA
ICC	Supply current (four amplifiers)	No load $\frac{V_{O} = 0}{V_{O} = V_{OM}}$	25°C	 	2.4	3.6		2.4	4.5	_	2.4	4.5	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	f = 1 Hz to 20 kHz	25°C		120			120			120		dE

electrical characteristics at specified free-air temperature, $V_{CC+} = \pm 15$ V (unless otherwise noted)

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for T_A is -55°C to 125°C for LM148, -25°C to 85°C for LM248, and 0°C to 70°C for LM348.

[‡]This parameter is not production tested.

SLOS058B - OCTOBER 1979 - REVISED AUGUST 1996


LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

SLOS058B - OCTOBER 1979 - REVISED AUGUST 1996

operating characteristics, V_{CC\pm} = ± 15 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS				TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 2 k\Omega$,	C _L = 100 pF,	See Figure 1		0.5		V/µs

PARAMETER MEASUREMENT INFORMATION

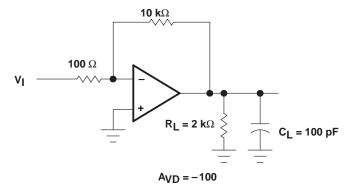


Figure 2. Inverting Amplifier

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated