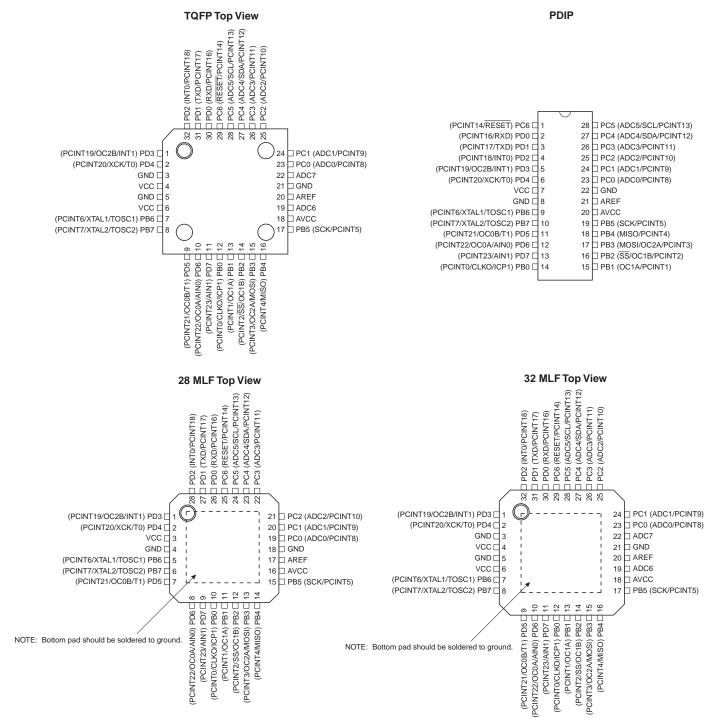
Features

- High performance, low power Atmel[®] AVR[®] 8-bit microcontroller
- Advanced RISC architecture
 - 131 powerful instructions most single clock cycle execution
 - 32 × 8 general purpose working registers
 - Fully static operation
 - Up to 20 MIPS throughput at 20MHz
 - On-chip 2-cycle multiplier
- High endurance non-volatile memory segments
 - 4/8/16 Kbytes of in-system self-programmable flash program memory
 - 256/512/512 bytes EEPROM
 - 512/1K/1Kbytes internal SRAM
 - Write/erase cyles: 10,000 flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional boot code section with independent lock bits In-system programming by on-chip boot program True read-while-write operation
 - Programming lock for software security
- QTouch[®] library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix acquisition
 - Up to 64 sense channels
- Peripheral features
 - Two 8-bit timer/counters with separate prescaler and compare mode
 - One 16-bit timer/counter with separate prescaler, compare mode, and capture mode
 - Real time counter with separate oscillator
 - Six PWM channels
 - 8-channel 10-bit ADC in TQFP and QFN/MLF package
 - 6-channel 10-bit ADC in PDIP Package
 - Programmable serial USART
 - Master/slave SPI serial interface
 - Byte-oriented 2-wire serial interface (Philips I²C compatible)
 - Programmable watchdog timer with separate on-chip oscillator
 - On-chip analog comparator
 - Interrupt and wake-up on pin change
- Special microcontroller features
 - DebugWIRE on-chip debug system
 - Power-on reset and programmable brown-out detection
 - Internal calibrated oscillator
 - External and internal interrupt sources
 - Five sleep modes: Idle, ADC noise reduction, power-save, power-down, and standby
- I/O and packages
 - 23 programmable I/O lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating voltage:
 - 1.8V 5.5V for Atmel ATmega48V/88V/168V
 - 2.7V 5.5V for Atmel ATmega48/88/168
- Temperature range:
 - -40°C to 85°C
- Speed grade:
 - ATmega48V/88V/168V: 0 4MHz @ 1.8V 5.5V, 0 10MHz @ 2.7V 5.5V
 - ATmega48/88/168: 0 10MHz @ 2.7V 5.5V, 0 20MHz @ 4.5V 5.5V
- Low power consumption
 - Active mode:
 - 250µA at 1MHz, 1.8V
 - 15µA at 32kHz, 1.8V (including oscillator)
 - Power-down mode:
 - 0.1µA at 1.8V
- Note: 1. See "Data retention" on page 8 for details.

8-bit Atmel Microcontroller with 4/8/16K Bytes In-System Programmable Flash


ATmega48/V ATmega88/V ATmega168/V

Summary

Rev. 2545US-AVR-11/2015

1. Pin configurations

1.1 Pin descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate functions of port B" on page 83 and "System clock and clock options" on page 27.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 29-3 on page 314. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "Alternate functions of port C" on page 86.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "Alternate functions of port D" on page 89.

1.1.7 AV_{CC}

 AV_{CC} is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6..4 use digital supply voltage, V_{CC} .

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF package only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.

2. Overview

The Atmel ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48/88/168 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block diagram

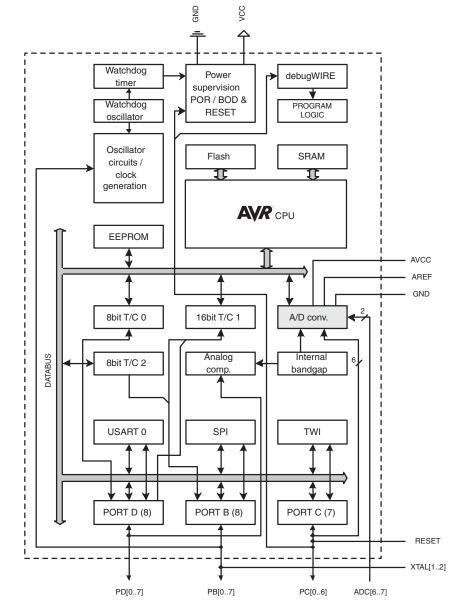


Figure 2-1. Block diagram.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting

architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The Atmel ATmega48/88/168 provides the following features: 4K/8K/16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM, 512/1K/1K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

Atmel offers the QTouch Library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression[®] (AKS[®]) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using the Atmel high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48/88/168 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48/88/168 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison between Atmel ATmega48, Atmel ATmega88, and Atmel ATmega168

The ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices.

Device	Flash	EEPROM	RAM	Interrupt vector size
ATmega48	4Kbytes	256Bytes	512Bytes	1 instruction word/vector
ATmega88	8Kbytes	512Bytes	1Kbytes	1 instruction word/vector
ATmega168	16Kbytes	512Bytes	1Kbytes	2 instruction words/vector

Table 2-1.Memory size summary.

ATmega88 and ATmega168 support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Data retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About code examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

6. Capacitive touch sensing

The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website.

7. Register summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	_	-	_	-	-	_	-	_
(0xFE)	Reserved	_	_	_	_	_	_	_	_	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	_	-	_	_	_	_	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4) (0xF3)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xF3) (0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	_		_		_	_			
(0xF0)	Reserved	_	_	_	_	_	_	_	_	
(0xEF)	Reserved	_	_	_	_	_	_	_	_	
(0xEE)	Reserved	_	_	_	_	_	_	_	_	
(0xED)	Reserved	_	-	_	_	_	_	_	_	
(0xEC)	Reserved	_	-	_	_	_	_	-	-	
(0xEB)	Reserved	_	-	_	_	-	-	_	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1) (0xE0)	Reserved Reserved	_	-	-	_		-	_	-	
(0xE0) (0xDF)	Reserved		_				_		_	
(0xDE)	Reserved	_	_	_	_	_	_	_	_	
(0xDD)	Reserved	_	_	_	_	_	_	_	_	
(0xDC)	Reserved	_	-	_	_	_	_	_	_	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	_	_	_	_	_	_	_	_	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	<u> </u>
(0xD1) (0xD0)	Reserved Reserved	_	_	-		-		-		
(0xD0) (0xCF)	Reserved	_	_	_	_	-	-	_	_	
(0xCF) (0xCE)	Reserved	_	_	_		_	_	_		
(0xCD)	Reserved	_	_	_	_	-	_	_	_	1
(0xCC)	Reserved	_	_	_	_	_	_	_	_	1
(0xCB)	Reserved	-	_	_	_	_	_	_	_	
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	UDR0				USART I/O	data register				194
(0xC5)	UBRR0H						USART baud	rate register high		198
(0xC4)	UBRR0L					rate register low				198
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	UCSR0C	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /UDORD0	UCSZ00 / UCPHA0	UCPOL0	196/211
(0xC1)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	195
(0xC0)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	194

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved				-				-	Tage
(0xBF) (0xBE)	Reserved	-	-	-		-	-	-	_	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	_	244
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	241
(0xBB)	TWDR					rface data registe				243
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	244
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	243
(0xB8)	TWBR				2-wire serial interf	ace bit rate regist	er			241
(0xB7)	Reserved	-		-	-	-	-	-	-	
(0xB6)	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	163
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	OCR2B				imer/Counter2 outp					162
(0xB3)	OCR2A			I	imer/Counter2 outp		ter A			161
(0xB2) (0xB1)	TCNT2 TCCR2B	FOC2A	FOC2B	-	–	Inter2 (8-bit) WGM22	CS22	CS21	CS20	<u>161</u> 160
(0xB1) (0xB0)	TCCR2B	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	157
(0xAF)	Reserved	-	-	-	-	_	_	-	-	107
(0xAE)	Reserved	_	_	_	_	_	_	_	_	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4) (0xA3)	Reserved Reserved	_			_	_	_		_	
(0xA3) (0xA2)	Reserved	_	_			_	_			
(0xA1)	Reserved	_	_	_	_	_	_	_	_	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	_	_	_	_	_	_	_	_	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	_	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99) (0x98)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0x98) (0x97)	Reserved				_	_			_	
(0x96)	Reserved	_	_	_	_	_	_	_	_	
(0x95)	Reserved	_	_	_	_	_	_	_	_	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	_	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	– Timor/(-	-	-	100
(0x8B) (0x8A)	OCR1BH OCR1BL				Counter1 - output co Counter1 - output c					138 138
(0x8A) (0x89)	OCR16L				Counter1 - output c					138
(0x89) (0x88)	OCR1AL				Counter1 - output c					138
(0x87)	ICR1H				er/Counter1 - input of		•			139
(0x86)	ICR1L				er/Counter1 - input		* •			139
(0x85)	TCNT1H				mer/Counter1 - cou					138
(0x84)	TCNT1L			T	imer/Counter1 - cou	unter register low	byte			138
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	137
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	136
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	134
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AINOD	248
(0x7E)	DIDR0	-	-	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	265

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	_	_	-	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	261
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	264
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	262
(0x79)	ADCH				ADC data reg	ister high byte				264
(0x78)	ADCL				ADC data reg	gister low byte				264
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	Reserved	-	-	-	-	-	_	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-		-		102
(0x70) (0x6F)	TIMSK2 TIMSK1	_		- ICIE1	-	_	OCIE2B OCIE1B	OCIE2A OCIE1A	TOIE2 TOIE1	162 139
(0x6F) (0x6E)	TIMSKI	_		-			OCIE1B OCIE0B	OCIE IA OCIE0A	TOIE1	139
(0x6E) (0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	75
(0x6C)	PCMSK2 PCMSK1		PCINT22 PCINT14	PCINT21 PCINT13	PCINT20 PCINT12	PCINT19 PCINT11	PCINT18 PCINT10	PCINT17 PCINT9	PCINT8	75
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT3	PCINT0	75
(0x6A)	Reserved		-	-	-	-		-	-	10
(0x69)	EICRA	_	_	_	_	ISC11	ISC10	ISC01	ISC00	71
(0x68)	PCICR	_	_	_	_	-	PCIE2	PCIE1	PCIE0	
(0x67)	Reserved	-	_	_	-	_	-	-	-	
(0x66)	OSCCAL				Oscillator calil	pration register				37
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRR	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	PRUSART0	PRADC	41
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	37
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	53
0x3F (0x5F)	SREG	I	Т	Н	S	V	N	Z	С	11
0x3E (0x5E)	SPH	-	-	-	-	-	(SP10) ^{5.}	SP9	SP8	13
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	13
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	_	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-		000
0x37 (0x57)	SPMCSR	SPMIE -	(RWWSB) ^{5.}	-	(RWWSRE) ^{5.}	BLBSET	PGWRT	PGERS -	SELFPRGEN	290
0x36 (0x56) 0x35 (0x55)	Reserved MCUCR	_			PUD	_	_	IVSEL	IVCE	
0x34 (0x54)	MCUSR				-	- WDRF	BORF	EXTRF	PORF	
0x33 (0x53)	SMCR					SM2	SM1	SMO	SE	39
0x32 (0x52)	Reserved	_	_	_	_	-	_	_	-	00
0x31 (0x51)	Reserved	_	_	_	_	_	_	_	_	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	247
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR				SPI data	a register				174
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	_	-	-	SPI2X	173
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	172
0x2B (0x4B)	GPIOR2				General purpos	se I/O register 2				26
0x2A (0x4A)	GPIOR1				General purpos	se I/O register 1				26
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCR0B			Т	imer/Counter0 outp	out compare regist	ter B			
0x27 (0x47)	OCR0A			Т	imer/Counter0 outp		ter A			
	TCNT0				Timer/Cou	nter0 (8-bit)	1	1		
0x26 (0x46)		50004	FOC0B	-	-	WGM02	CS02	CS01	CS00	
0x25 (0x45)	TCCR0B	FOC0A				-	-	WGM01	WGM00	
0x25 (0x45) 0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-				
0x25 (0x45) 0x24 (0x44) 0x23 (0x43)	TCCR0A GTCCR			-	-	-	-	PSRASY	PSRSYNC	143/164
0x25 (0x45) 0x24 (0x44) 0x23 (0x43) 0x22 (0x42)	TCCR0A GTCCR EEARH	COM0A1		-	– (EEPROM address	– register high byte	- e) ^{5.}			22
0x25 (0x45) 0x24 (0x44) 0x23 (0x43) 0x22 (0x42) 0x21 (0x41)	TCCR0A GTCCR EEARH EEARL	COM0A1		-	– (EEPROM address EEPROM addres	– register high byte s register low byte	- e) ^{5.}			22 22
0x25 (0x45) 0x24 (0x44) 0x23 (0x43) 0x22 (0x42) 0x21 (0x41) 0x20 (0x40)	TCCR0A GTCCR EEARH EEARL EEDR	COM0A1 TSM	COM0A0 _	-	– (EEPROM address EEPROM addres EEPROM of	– register high byte s register low byte data register	– – e) ^{5.}	PSRASY	PSRSYNC	22 22 22
0x25 (0x45) 0x24 (0x44) 0x23 (0x43) 0x22 (0x42) 0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	TCCR0A GTCCR EEARH EEARL EEDR EECR	COM0A1		-	_ (EEPROM address EEPROM addres EEPROM o EEPROM	– register high byte s register low byte lata register EERIE	- e) ^{5.}			22 22 22 22 22
0x25 (0x45) 0x24 (0x44) 0x23 (0x43) 0x22 (0x42) 0x21 (0x41) 0x20 (0x40) 0x1F (0x3F) 0x1E (0x3E)	TCCR0A GTCCR EEARH EEARL EEDR EECR GPIOR0	COM0A1 TSM	COM0A0 - -	EEPM1	_ (EEPROM address EEPROM addres EEPROM o EEPM0 General purpos	_ register high byte s register low byte data register EERIE se I/O register 0	e EEMPE	PSRASY	PSRSYNC	22 22 22 22 22 26
0x25 (0x45) 0x24 (0x44) 0x23 (0x43) 0x22 (0x42) 0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	TCCR0A GTCCR EEARH EEARL EEDR EECR	COM0A1 TSM	COM0A0 _	-	_ (EEPROM address EEPROM addres EEPROM o EEPROM	– register high byte s register low byte lata register EERIE	– – e) ^{5.}	PSRASY	PSRSYNC	22 22 22 22 22

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	162
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	140
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	93
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	93
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	93
0x08 (0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	92
0x07 (0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	92
0x06 (0x26)	PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	92
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	92
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	92
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	92
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0x01 (0x21)	Reserved	-	-	-	_	_	-	-	-	
0x0 (0x20)	Reserved	-	-	-	-	-	-	-	-	

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- 5. Only valid for ATmega88/168

8. Instruction set summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTION	8			
ADD	Rd, Rr	Add two registers	$Rd \leftarrow Rd + Rr$	Z, C, N, V, H	1
ADC	Rd, Rr	Add with carry two registers	$Rd \leftarrow Rd + Rr + C$	Z, C, N, V, H	1
ADIW	Rdl,K	Add immediate to word	Rdh:Rdl ← Rdh:Rdl + K	Z, C, N, V, S	2
SUB	Rd, Rr	Subtract two registers	$Rd \leftarrow Rd - Rr$	Z, C, N, V, H	1
SUBI	Rd, K	Subtract constant from register	$Rd \leftarrow Rd - K$	Z, C, N, V, H	1
SBC	Rd, Rr	Subtract with carry two registers	$Rd \leftarrow Rd - Rr - C$	Z, C, N, V, H	1
SBCI	Rd, K	Subtract with carry constant from reg.	$Rd \leftarrow Rd - K - C$	Z, C, N, V, H	1
SBIW	Rdl,K	Subtract immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z, C, N, V, S	2
AND	Rd, Rr	Logical AND registers	$Rd \leftarrow Rd \bullet Rr$	Z, N, V	1
ANDI	Rd, K	Logical AND register and constant	$Rd \leftarrow Rd \bullet K$	Z, N, V	1
OR	Rd, Rr	Logical OR registers	$Rd \leftarrow Rd \vee Rr$	Z, N, V	1
ORI	Rd, K	Logical OR register and constant	Rd ← Rd v K	Z, N, V	1
EOR	Rd, Rr	Exclusive OR registers	$Rd \leftarrow Rd \oplus Rr$	Z, N, V	1
COM	Rd	One's complement	$Rd \leftarrow 0xFF - Rd$	Z, C, N, V	1
NEG	Rd	Two's complement	Rd ← 0x00 - Rd	Z, C, N, V, H	1
SBR	Rd,K	Set bit(s) in register	$Rd \leftarrow Rd \vee K$	Z, N, V	1
CBR	Rd,K	Clear bit(s) in register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z, N, V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$ $Rd \leftarrow Rd - 1$	Z, N, V	1
DEC	Rd	Decrement		Z, N, V	1
TST CLR	Rd Rd	Test for zero or minus	$Rd \leftarrow Rd \bullet Rd$	Z, N, V	1
SER	Rd	Clear register	$Rd \leftarrow Rd \oplus Rd$ $Rd \leftarrow 0xFF$	Z, N, V None	1
MUL	Rd, Rr	Set register	$Rd \leftarrow 0xFF$ R1:R0 \leftarrow Rd x Rr	Z, C	2
MULS	Rd, Rr	Multiply unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z, C Z, C	2
MULSU	Rd, Rr	Multiply signed Multiply signed with unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z, C	2
FMUL	Rd, Rr	Fractional multiply unsigned	$R1:R0 \leftarrow (Rd x Rr) << 1$	Z, C	2
FMULS	Rd, Rr	Fractional multiply signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z, C	2
FMULSU	Rd, Rr	Fractional multiply signed with unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z, C	2
BRANCH INSTRUCT		Hadionar manpy signed war ansigned		2,0	
RJMP	k	Relative jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect jump to (Z)	PC ← Z	None	2
JMP ⁽¹⁾	k	Direct jump	$PC \leftarrow k$	None	3
RCALL	k	Relative subroutine call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect call to (Z)	$PC \leftarrow Z$	None	3
CALL ⁽¹⁾	k	Direct subroutine call	$PC \leftarrow k$	None	4
RET		Subroutine return	$PC \leftarrow STACK$	None	4
RETI		Interrupt return	$PC \leftarrow STACK$	1	4
CPSE	Rd,Rr	Compare, skip if equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N, V, C, H	1
CPC	Rd,Rr	Compare with carry	Rd – Rr – C	Z, N, V, C, H	1
CPI	Rd,K	Compare register with immediate	Rd – K	Z, N, V, C, H	1
SBRC	Rr, b	Skip if bit in register cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if bit in register is set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if bit in I/O register cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if bit in I/O register is set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if status flag set	if (SREG(s) = 1) then PC \leftarrow PC+k + 1	None	1/2
BRBC	s, k	Branch if status flag cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if not equal	if $(Z = 0)$ then PC \leftarrow PC + k + 1 if $(C = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if carry set	if (C = 1) then PC \leftarrow PC + k + 1 if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCC BRSH	k k	Branch if carry cleared	if (C = 0) then PC \leftarrow PC + k + 1 if (C = 0) then PC \leftarrow PC + k + 1	None	1/2 1/2
BRSH	k k	Branch if same or higher Branch if lower	if (C = 0) then PC \leftarrow PC + k + 1 if (C = 1) then PC \leftarrow PC + k + 1	None None	1/2
BRMI	k k	Branch if minus	if (N = 1) then PC \leftarrow PC + k + 1 if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if greater or equal, signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if less than zero, signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if half carry flag set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if half carry flag cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T flag set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T flag cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if overflow flag is set	if $(V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if overflow flag is cleared	if $(V = 0)$ then PC \leftarrow PC + k + 1	None	1/2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if interrupt enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if interrupt disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST	INSTRUCTIONS				-
SBI	P,b	Set bit in I/O register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear bit in I/O register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical shift left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z, C, N, V	1
LSR	Rd	Logical shift right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z, C, N, V	1
ROL	Rd	Rotate left through carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z, C, N, V	1
ROR	Rd	Rotate right through carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z, C, N, V	1
ASR	Rd	Arithmetic shift right	Rd(n) ← Rd(n+1), n=06	Z, C, N, V	1
SWAP	Rd	Swap nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	S	Flag set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	S	Flag clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit store from register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to register	$Rd(b) \leftarrow T$	None	1
SEC		Set carry	C ← 1	С	1
CLC		Clear carry	C ← 0	С	1
SEN		Set negative flag	N ← 1	N	1
CLN		Clear negative flag	N ← 0	N	1
SEZ		Set zero flag	Z ← 1	Z	1
CLZ		Clear zero flag	Z ← 0	Z	1
SEI		Global interrupt enable	← 1	1	1
CLI		Global interrupt disable			1
SES		Set signed test flag	S ← 1	S	1
CLS		Clear signed test flag	S ← 0	S V	1
SEV		Set Twos complement overflow	V ← 1	V	1
CLV		Clear Twos complement overflow	V ← 0	T	1
SET		Set T in SREG	$T \leftarrow 1$ $T \leftarrow 0$	Т	1
CLT		Clear T in SREG		н	
SEH CLH		Set half carry flag in SREG Clear half carry flag in SREG	$H \leftarrow 1$ $H \leftarrow 0$	н	1
DATA TRANSFER I	NETRUCTIONS		11 ← 0		
MOV	Rd, Rr	Move between registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy register Word	$Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load immediate	Rd ← K	None	1
LD	Rd, X	Load indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load indirect and post-inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load indirect and pre-dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load indirect and post-inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load indirect and pre-dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load indirect with displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load indirect and post-inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load indirect and pre-dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load indirect with displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store indirect and post-inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store indirect and pre-dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store indirect and post-inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store indirect and pre-dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store indirect with displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store indirect and post-inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store indirect and pre-dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store indirect with displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store direct to SRAM	(k) ← Rr	None	2
LPM		Load program memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load program memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load program memory and post-inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store program memory	(Z) ← R1:R0	None	-
IN	Rd, P	In port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push register on stack	$STACK \leftarrow Rr$	None	2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
POP	Rd	Pop register from stack	$Rd \leftarrow STACK$	None	2
MCU CONTROL INS	TRUCTIONS				
NOP		No operation		None	1
SLEEP		Sleep	(See specific descr. for sleep function)	None	1
WDR		Watchdog reset	(See specific descr. for WDR/timer)	None	1
BREAK		Break	For on-chip debug only	None	N/A

Note: 1. These instructions are only available in Atmel ATmega168.

9. Ordering information

9.1 Atmel ATmega48

Speed (MHz)	Power supply	Ordering code ⁽²⁾	Package ⁽¹⁾	Operational range
10 ⁽³⁾	1.8V - 5.5V	ATmega48V-10AUR ⁽⁵⁾ ATmega48V-10MUR ⁽⁵⁾ ATmega48V-10AU ATmega48V-10MMU ATmega48V-10MMUR ⁽⁵⁾ ATmega48V-10MMH ⁽⁴⁾ ATmega48V-10MMHR ⁽⁴⁾⁽⁵⁾ ATmega48V-10MU ATmega48V-10PU	32A 32M1-A 32A 28M1 28M1 28M1 28M1 32M1-A 28P3	Industrial (-40°C to 85°C)
20 ⁽³⁾	2.7V - 5.5V	ATmega48-20AUR ⁽⁵⁾ ATmega48-20MUR ⁽⁵⁾ ATmega48-20AU ATmega48-20MMU ATmega48-20MMUR ⁽⁵⁾ ATmega48-20MMH ⁽⁴⁾ ATmega48-20MU ATmega48-20MU ATmega48-20PU	32A 32M1-A 32A 28M1 28M1 28M1 28M1 32M1-A 28P3	Industrial (-40°C to 85°C)

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.

4. NiPdAu lead finish.

5. Tape & Reel.

	Package type					
32A	32-lead, thin (1.0mm) plastic quad flat package (TQFP)					
28M1	28-pad, 4 × 4 × 1.0 body, lead pitch 0.45mm quad flat no-lead/micro lead frame package (QFN/MLF)					
32M1-A	32-pad, 5 × 5 × 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF)					
28P3	28-lead, 0.300" wide, plastic dual inline package (PDIP)					

9.2 Atmel ATmega88

Speed (MHz)	Power supply	Ordering code ⁽²⁾	Package ⁽¹⁾	Operational range
10 ⁽³⁾	1.8V - 5.5V	ATmega88V-10AUR ⁽⁴⁾ ATmega88V-10MUR ⁽⁴⁾ ATmega88V-10AU ATmega88V-10MU ATmega88V-10PU	32A 32M1-A 32A 32M1-A 28P3	Industrial (-40°C to 85°C)
20 ⁽³⁾	2.7V - 5.5V	ATmega88-20AUR ⁽⁴⁾ ATmega88-20MUR ⁽⁴⁾ ATmega88-20AU ATmega88-20MU ATmega88-20PU	32A 32M1-A 32A 32M1-A 28P3	Industrial (-40°C to 85°C)

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.

4. Tape & reel

	Package type
32A	32-lead, thin (1.0mm) plastic quad flat package (TQFP)
32M1-A	32-pad, 5 x 5 x 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF)
28P3	28-lead, 0.300" wide, plastic dual inline package (PDIP)

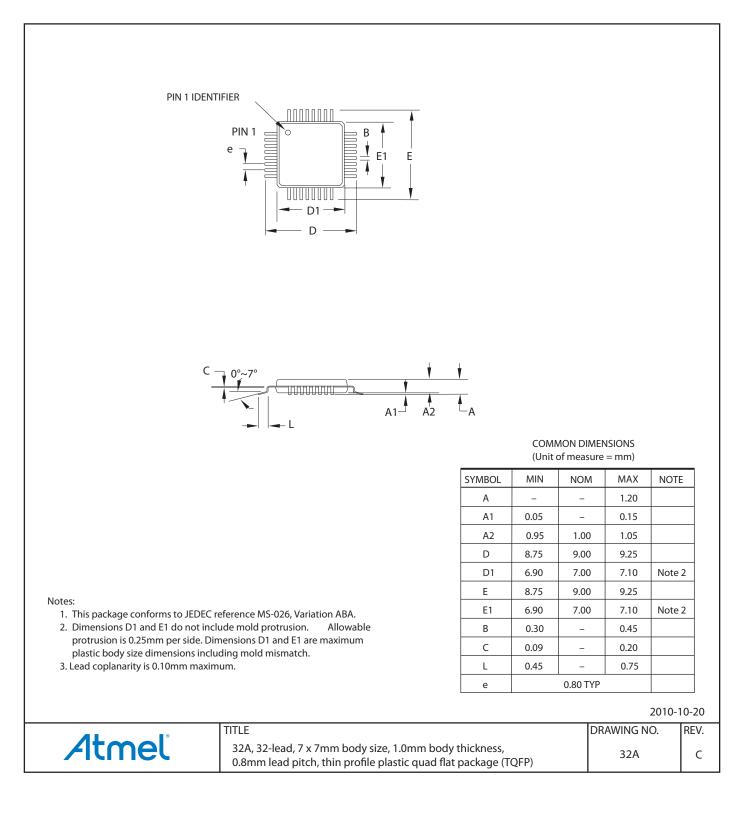
9.3 Atmel ATmega168

Speed (MHz) ⁽³⁾	Power supply	Ordering code ⁽²⁾	Package ⁽¹⁾	Operational range
10	1.8V - 5.5V	ATmega168V-10AUR ⁽⁴⁾ ATmega168V-10MUR ⁽⁴⁾ ATmega168V-10AU ATmega168V-10MU ATmega168V-10PU	32A 32M1-A 32A 32M1-A 28P3	Industrial (-40°C to 85°C)
20	2.7V - 5.5V	ATmega168-20AUR ⁽⁴⁾ ATmega168-20MUR ⁽⁴⁾ ATmega168-20AU ATmega168-20MU ATmega168-20PU	32A 32M1-A 32A 32M1-A 28P3	Industrial (-40°C to 85°C)

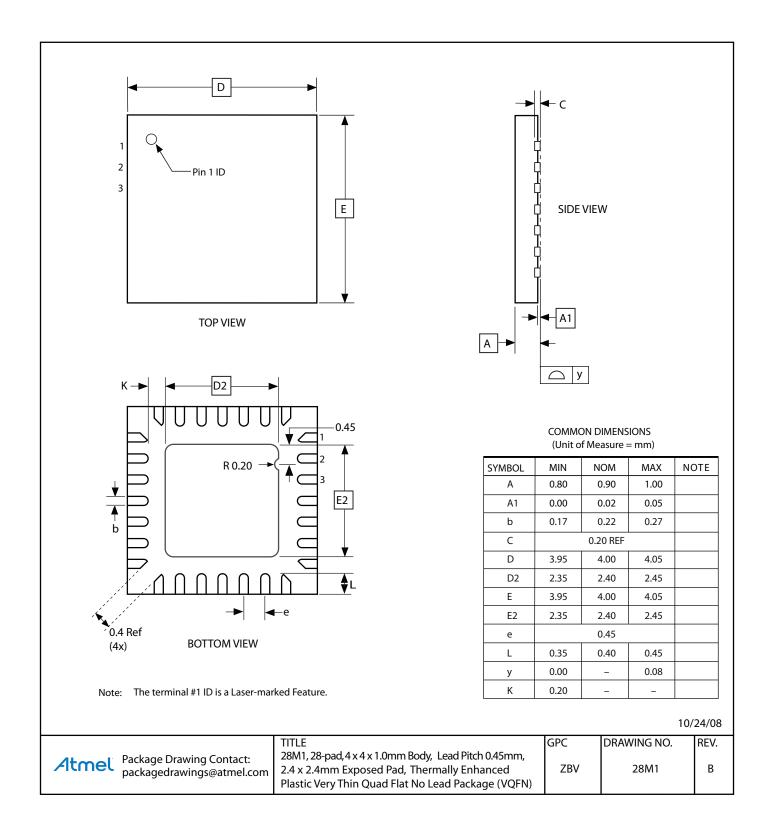
Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.

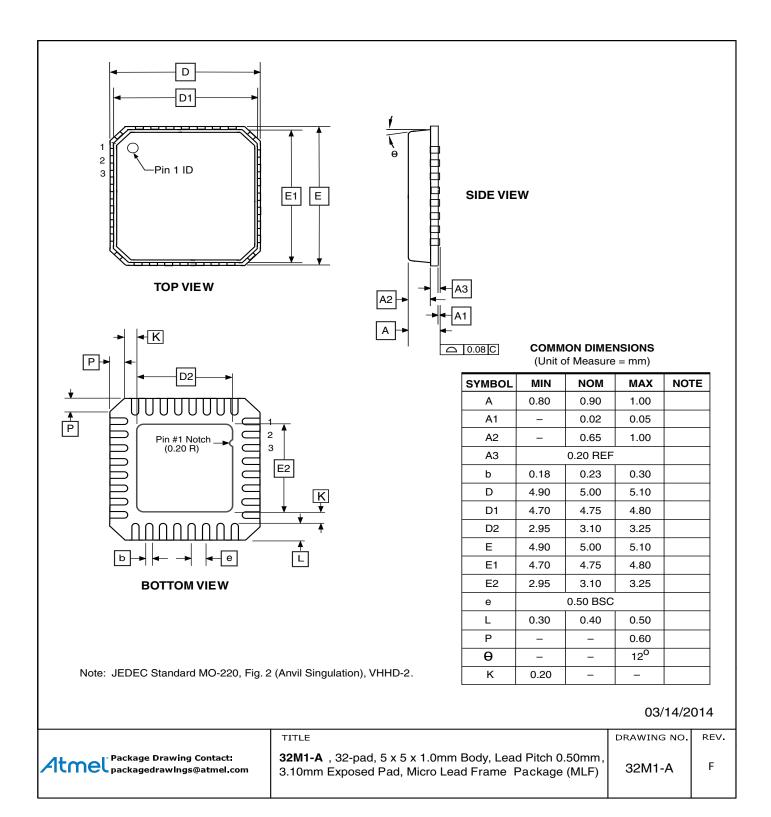

4. Tape & reel

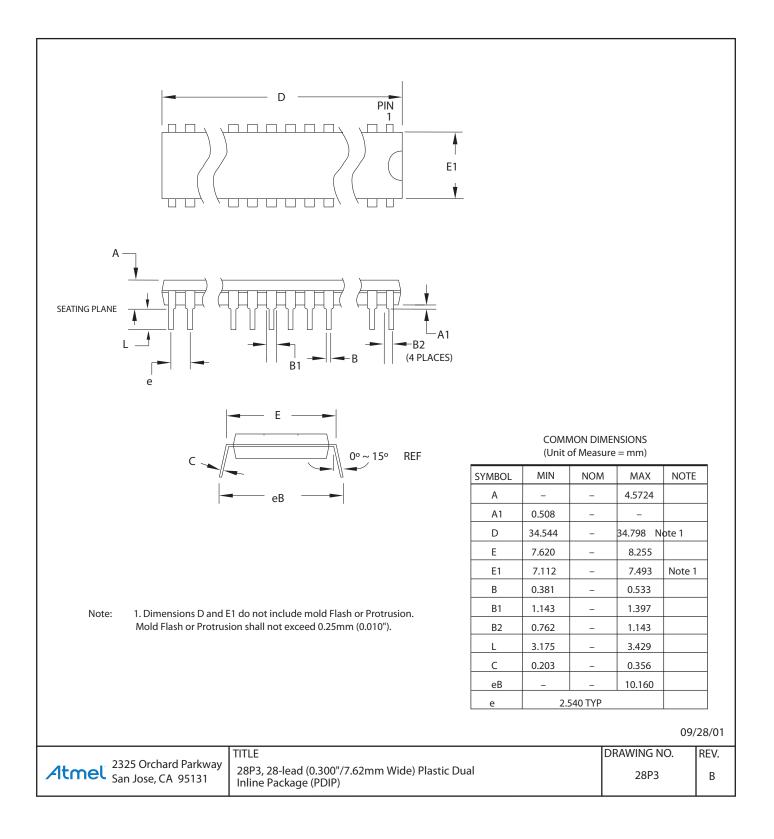
	Package type					
32A	32-lead, thin (1.0mm) plastic quad flat package (TQFP)					
32M1-A	32-pad, 5 × 5 × 1.0 body, lead pitch 0.50mm quad flat no-lead/micro lead frame package (QFN/MLF)					
28P3	28-lead, 0.300" wide, plastic dual inline package (PDIP)					



10. Packaging information

10.1 32A





10.3 32M1-A

10.4 28P3

11. Errata

11.1 Errata Atmel ATmega48

The revision letter in this section refers to the revision of the ATmega48 device.

11.1.1 Rev K

- Full swing crystal oscillator not supported
- Parallel programming timing modified
- Write wait delay for NVM is increased
- Changed device ID

1. Full swing crystal oscillator not supported

The full swing crystal oscillator functionality is not available in revision K.

Problem fix/workaround

Use alternative clock sources available in the device.

2. Parallel programming timing modified

		Previous die revision				Revision K			
Symbol	Parameter	Min	Тур.	Max	Units	Min	Тур.	Max	Units
t _{WLRH_CE}	/WR Low to RDY/BSY High for Chip Erase	7.5		9	ms	9.8		10.5	ms
t _{BVDV}	/BS1 Valid to DATA valid	0		250	ns	0		335	ns
t _{OLDV}	/OE Low to DATA Valid			250	ns			335	ns

3 Write wait delay for NVM is increased

The write delay for non-volatile memory (NVM) is increased as follows:

	Other revisions	Revision K		
Symbol	Minimum Wait Delay	Minimum Wait Delay		
t _{WD_ERASE}	9ms	10.5ms		

4. Changed device ID

The device ID has been modified according to the to the following:

	Any die revision			Previous die revision	Revision K		
	Signat	ture byte a (Unchang		Device ID read via	Device ID read via		
Part	Part 0x000 0x001		0x002	debugWIRE	debugWIRE		
ATmega48	0x1E	0x92	0x05	0x9205	0x920A		
ATmega48V	0x1E	0x92	0x05	0x9205	0x920A		

11.1.2 Rev E to J	
	Not sampled.
11.1.3 Rev. D	
	 Interrupts may be lost when writing the timer registers in the asynchronous timer
	1. Interrupts may be lost when writing the timer registers in the asynchronous timer
	The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.
	Problem fix/workaround
	Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
11.1.4 Rev. C	
	 Reading EEPROM when system clock frequency is below 900kHz may not work Interrupts may be lost when writing the timer registers in the asynchronous timer
	1. Reading EEPROM when system clock frequency is below 900kHz may not work
	Reading Data from the EEPROM at system clock frequency below 900kHz may result in wrong data read.
	Problem fix/workaround
	Avoid using the EEPROM at clock frequency below 900kHz.
	2. Interrupts may be lost when writing the timer registers in the asynchronous timer
	The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.
	Problem fix/workaround
	Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
11.1.5 Rev. B	

- Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.1.6 Rev A

- · Part may hang in reset
- · Wrong values read after erase only operation
- · Watchdog timer interrupt disabled
- · Start-up time with crystal oscillator is higher than expected
- High power consumption in power-down with external clock
- · Asynchronous oscillator does not stop in power-down
- Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem fix/workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

2. Wrong values read after erase only operation

At supply voltages below 2.7V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

Problem fix/workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

3. Watchdog timer interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog time-out following an interrupt, the device works correctly.

Problem fix/workaround

Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period.

4. Start-up time with crystal oscillator is higher than expected

The clock counting part of the start-up time is about two times higher than expected for all start-up periods when running on an external Crystal. This applies only when waking up by reset. Wake-up from power down is not affected. For most settings, the clock counting parts is a small fraction of the overall start-up time, and thus, the problem can be ignored. The exception is when using a very low frequency crystal like for instance a 32kHz clock crystal.

Problem fix/workaround

No known workaround.

5. High power consumption in power-down with external clock

The power consumption in power down with an active external clock is about 10 times higher than when using internal RC or external oscillators.

Problem fix/workaround

Stop the external clock when the device is in power down.

6. Asynchronous oscillator does not stop in power-down

The Asynchronous oscillator does not stop when entering power down mode. This leads to higher power consumption than expected.

Problem fix/workaround

Manually disable the asynchronous timer before entering power down.

7. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.2 Errata Atmel ATmega88

The revision letter in this section refers to the revision of the ATmega88 device.

11.2.1 Rev K

- Full swing crystal oscillator not supported
- Parallel programming timing modified
- Write wait delay for NVM is increased
- Changed device ID
- Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Full swing crystal oscillator not supported

The full swing crystal oscillator functionality is not available in revision K.

Problem fix/workaround

Use alternative clock sources available in the device.

2. Parallel programming timing modified

		Previous die revision				Revision K			
Symbol	Parameter	Min	Тур.	Max	Units	Min	Тур.	Max	Units
t _{wlRH_CE}	/WR Low to RDY/BSY High for Chip Erase	7.5		9	ms	9.8		10.5	ms
t _{BVDV}	/BS1 Valid to DATA valid	0		250	ns	0		335	ns
t _{OLDV}	/OE Low to DATA Valid			250	ns			335	ns

3 Write wait delay for NVM is increased

The write delay for non-volatile memory (NVM) is increased as follows:

	Other revisions	Revision K		
Symbol	Minimum Wait Delay	Minimum Wait Delay		
t _{wd_erase}	9ms	10.5ms		

4. Changed device ID

The device ID has been modified according to the to the following:

	Any die revision			Previous die revision	Revision K
	-	ture byte a (Unchang	d)		Device ID read via
Part	0x000	0x001	0x002	debugWIRE	debugWIRE
ATmega88	0x1E	0x93	0x0A	0x930A	0x930F
ATmega88V	0x1E	0x93	0x0A	0x930A	0x930F

		5. Interrupts may be lost when writing the timer registers in the asynchronous timer
		The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.
		Problem fix/workaround
		Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
11.2.2	Rev E to J	
		Not sampled.
11 2 3	Rev. D	
11.2.5		 Interrupts may be lost when writing the timer registers in the asynchronous timer
		1. Interrupts may be lost when writing the timer registers in the asynchronous timer
		The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.
		Problem fix/workaround
		Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
11.2.4	Rev. B/C	
		Not sampled.
11.2.5	Rev. A	
		 Writing to EEPROM does not work at low operating voltages Part may hang in reset Interrupts may be lost when writing the timer registers in the asynchronous timer
		1. Writing to EEPROM does not work at low operating voltages
		Writing to the EEPROM does not work at low voltages.
		Problem fix/workaround
		Do not write the EEPROM at voltages below 4.5 Volts. This will be corrected in rev. B.
		2. Part may hang in reset
		Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening

also in run-mode. The following three cases can trigger the device to get stuck in a resetstate:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.b.

Problem fix/workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

3. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.3 Errata Atmel ATmega168

The revision letter in this section refers to the revision of the ATmega168 device.

11.3.1 Rev K

- Full swing crystal oscillator not supported
- Parallel programming timing modified
- Write wait delay for NVM is increased
- Changed device ID
- Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Full swing crystal oscillator not supported

The full swing crystal oscillator functionality is not available in revision K.

Problem fix/workaround

Use alternative clock sources available in the device.

2. Parallel programming timing modified

		Previous die revision			Revision K				
Symbol	Parameter	Min	Тур.	Max	Units	Min	Тур.	Max	Units
t _{WLRH_CE}	/WR Low to RDY/BSY High for Chip Erase	7.5		9	ms	9.8		10.5	ms
t _{BVDV}	/BS1 Valid to DATA valid	0		250	ns	0		335	ns
t _{OLDV}	/OE Low to DATA Valid			250	ns			335	ns

3 Write wait delay for NVM is increased

The write delay for non-volatile memory (NVM) is increased as follows:

	Other revisions	Revision K		
Symbol	Minimum Wait Delay	Minimum Wait Delay		
t _{WD_ERASE}	9ms	10.5ms		

4. Changed device ID

The device ID has been modified according to the to the following:

	Any die revision Signature byte address ID (Unchanged)			Previous die revision	Revision K
				Device ID read via	Device ID read via
Part	0x000	0x001	0x002	debugWIRE	debugWIRE
ATmega168	0x1E	0x94	0x06	0x9406	0x940B
ATmega168V	0x1E	0x94	0x06	0x9406	0x940B

5. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.3.2 Rev D to J

Not sampled.

11.3.3 Rev C

Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.3.4 Rev B

• Part may hang in reset

· Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem fix/workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.3.5 Rev A

- · Wrong values read after erase only operation
- Part may hang in reset
- · Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Wrong values read after erase only operation

At supply voltages below 2.7V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

Problem fix/workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

2. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10ns immediately before the part wakes up after a reset, and in a 10ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem fix/workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem fix/workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

12. Datasheet revision history

1.

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. 2545U-11/15

Updated errata sections:

- I "Errata Atmel ATmega48" on page 23: Added errata for rev E to K.
 - I "Errata Atmel ATmega88" on page 27: Added errata for rev E to K.
 - I "Errata Atmel ATmega168" on page 30: Added errata for rev D to K.

12.2 Rev. 2545T-04/11

- 1. Ordering information has been updated by removing AI and MI and added AUR and MUR (tape & reel).
- 2. Added and corrected cross references and short-cuts.
- 3. Document updated according to new Atmel standard.
- 4. QTouch Library Support Features

12.3 Rev. 2545S-07/10

- 1. Note 6 and Note 7 in Table 29-5, "2-wire serial bus requirements.," on page 315 have been removed.
- 2. Document updated according to Atmel standard.

12.4 Rev. 2545R-07/09

- 1. Updated "Errata" on page 23.
- 2. Updated the last page with the Atmel new addresses.

12.5 Rev. 2545Q-06/09

- Removed the heading "About". The subsections of this sectionis now separate
- sections, "Resources", "Data Retention" and "About Code Examples"
- 2. Updated "Ordering information" on page 16.

12.6 Rev. 2545P-02/09

1. Removed Power-off slope rate from Table 29-3 on page 314.

12.7 Rev. 2545O-02/09

- 1. Changed minimum Power-on Reset Threshold Voltage (falling) to 0.05V in Table 29-3 on page 314.
- 2. Removed section "Power-on slope rate" from "System and reset characteristics" on page 314.

12.8 Rev. 2545N-01/09

- 1. Updated "Features" on page 1 and added the note "Not recommended for new designs".
- 2. Merged the sections Resources, Data Retention and About Code Examples under
- one common section, "Resources" on page 8.
- 3. Updated Figure 9-4 on page 35.
- 4. Updated "System clock prescaler" on page 36.
- 5. Updated "Alternate functions of port B" on page 83.
- 6. Added section "" on page 314.
- 7. Updated "Pin thresholds and hysteresis" on page 337.

12.9 Rev. 2545M-09/07

- 1. Added "Data retention" on page 8.
- 2. Updated "ADC characteristics" on page 318.
- 3. "Preliminary" removed through the datasheet.

12.10 Rev. 2545L-08/07

- 1. Updated "Features" on page 1.
- 2. Updated code example in "MCUCR MCU control register" on page 67.
- 3. Updated "System and reset characteristics" on page 314.
- 4. Updated Note in Table 9-3 on page 30, Table 9-5 on page 31, Table 9-8 on page 33, Table 9-10 on page 34.

12.11 Rev. 2545K-04/07

- 1. Updated "Interrupts" on page 56.
- 2. Updated"Errata Atmel ATmega48" on page 23.
- 3. Changed description in "Analog-to-digital converter" on page 250.

12.12 Rev. 2545J-12/06

- 1. Updated "Features" on page 1.
- 2. Updated Table 1-1 on page 2.
- 3. Updated "Ordering information" on page 16.
- 4. Updated "Packaging information" on page 19.

12.13 Rev. 2545I-11/06

- 1. Updated "Features" on page 1.
- 2. Updated Features in "2-wire serial interface" on page 213.
- 3. Fixed typos in Table 29-3 on page 314.

12.14 Rev. 2545H-10/06

- 1. Updated typos.
- 2. Updated "Features" on page 1.
- 3. Updated "Calibrated internal RC oscillator" on page 33.
- 4. Updated "System control and reset" on page 45.
- 5. Updated "Brown-out detection" on page 47.
- 6. Updated "Fast PWM mode" on page 126.
- 7. Updated bit description in "TCCR1C Timer/Counter1 control register C" on page 137.
- Updated code example in "SPI Serial peripheral interface" on page 165.
 Updated Table 15-3 on page 106, Table 15-6 on page 107, Table 15-8 on page 108,
- 9. Table 16-2 on page 134, Table 16-3 on page 135, Table 16-4 on page 136, Table 18-3 on page 158, Table 18-6 on page 159, Table 18-8 on page 160, and Table 28-5 on page 294.
- 10. Added Note to Table 26-1 on page 271, Table 27-5 on page 285, and Table 28-17 on page 307.
- 11. Updated "Setting the boot loader lock bits by SPM" on page 283.
- 12. Updated "Signature bytes" on page 295
- 13. Updated "Electrical characteristics" on page 310.
- 14. Updated "Errata" on page 23.

12.15 Rev. 2545G-06/06

- 1. Added Addresses in Registers.
- 2. Updated "Calibrated internal RC oscillator" on page 33.
- 3. Updated Table 9-12 on page 35, Table 10-1 on page 39, Table 11-1 on page 54, Table 14-3 on page 83.
- 4. Updated "ADC noise reduction mode" on page 40.
- 5. Updated note for Table 10-2 on page 43.
- 6. Updatad "Bit 2 PRSPI: Power reduction serial peripheral interface" on page 44.
- 7. Updated "TCCR0B Timer/counter control register B" on page 109.
- 8. Updated "Fast PWM mode" on page 126.
- 9. Updated "Asynchronous operation of Timer/Counter2" on page 155.
- 10. Updated "SPI Serial peripheral interface" on page 165.
- 11. Updated "UCSRnA USART MSPIM control and status register n A" on page 210.
- 12. Updated note in "Bit rate generator unit" on page 220.
- 13. Updated "Bit 6 ACBG: Analog comparator bandgap select" on page 247.
- 14. Updated Features in "Analog-to-digital converter" on page 250.
- 15. Updated "Prescaling and conversion timing" on page 253.
- 16. Updated "Limitations of debugWIRE" on page 267.
- 17 Added Table 29-1 on page 313.
- 18. Updated Figure 16-7 on page 127, Figure 30-45 on page 346.
- 19. Updated rev. A in "Errata Atmel ATmega48" on page 23.
- 20. Added rev. C and D in "Errata Atmel ATmega48" on page 23.

12.16 Rev. 2545F-05/05

- 1. Added Section 3. "Resources" on page 8
- 2. Update Section 9.6 "Calibrated internal RC oscillator" on page 33.
- 3. Updated Section 28.8.3 "Serial programming instruction set" on page 307.
- 4. Table notes in Section 29.2 "DC characteristics" on page 310 updated.
- 5. Updated Section 11. "Errata" on page 23.

12.17 Rev. 2545E-02/05

- MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame
- 1. Package QFN/MLF".
- 2. Updated "EECR The EEPROM control register" on page 22.
- 3. Updated "Calibrated internal RC oscillator" on page 33.
- 4. Updated "External clock" on page 35.
- 5. Updated Table 29-3 on page 314, Table 29-6 on page 316, Table 29-2 on page 313
- and Table 28-16 on page 307
- 6. Added "Pin change interrupt timing" on page 70
- 7. Updated "8-bit timer/counter block diagram." on page 95.
- Updated "SPMCSR Store program memory control and status register" on page 273.

- 9. Updated "Enter programming mode" on page 298.
- 10. Updated "DC characteristics" on page 310.
- 11. Updated "Ordering information" on page 16.
- 12. Updated "Errata Atmel ATmega88" on page 27 and "Errata Atmel ATmega168" on page 30.

12.18 Rev. 2545D-07/04

- 1. Updated instructions used with WDTCSR in relevant code examples.
- 2. Updated Table 9-5 on page 31, Table 29-4 on page 314, Table 27-9 on page 288,
- and Table 27-11 on page 290.
- Updated "System clock prescaler" on page 36.
 Moved "TIMSK2 Timer/Counter2 interrupt mask register" on page 162 and
- 4. "TIFR2 Timer/Counter2 interrupt flag register" on page 162 to "Register description" on page 157.
- 5. Updated cross-reference in "Electrical interconnection" on page 214.
- 6. Updated equation in "Bit rate generator unit" on page 220.
- 7. Added "Page size" on page 296.
- 8. Updated "Serial programming algorithm" on page 306.
- 9. Updated Ordering Information for "Atmel ATmega168" on page 18.
- 10. Updated "Errata Atmel ATmega88" on page 27 and "Errata Atmel ATmega168" on page 30.
- 11. Updated equation in "Bit rate generator unit" on page 220.

12.19 Rev. 2545C-04/04

- 1. Speed Grades changed: 12MHz to 10MHz and 24MHz to 20MHz
- 2. Updated "Speed grades" on page 312.
- 3. Updated "Ordering information" on page 16.
- 4. Updated "Errata Atmel ATmega88" on page 27.

12.20 Rev. 2545B-01/04

- 1. Added PDIP to "I/O and Packages", updated "Speed Grade" and Power Consumption Estimates in 12."Features" on page 1.
- 2. Updated "Stack pointer" on page 13 with RAMEND as recommended Stack Pointer value.
 - Added section "Power reduction register" on page 41 and a note regarding the use of
- 3. the PRR bits to 2-wire, Timer/Counters, USART, Analog Comparator and ADC sections.
- 4. Updated "Watchdog timer" on page 49.
- 5. Updated Figure 16-2 on page 134 and Table 16-3 on page 135.
- 6. Extra Compare Match Interrupt OCF2B added to features in section "8-bit Timer/Counter2 with PWM and asynchronous operation" on page 144

Updated Table 10-1 on page 39, Table 24-5 on page 265, Table 28-4 to Table 28-7

- 7. on page 293 to 295 and Table 24-1 on page 255. Added note 2 to Table 28-1 on page 292. Fixed typo in Table 13-1 on page 71.
- 8. Updated whole "Typical characteristics" on page 322.
- Added item 2 to 5 in "Errata Atmel ATmega48" on page 23. Renamed the following bits:
 - SPMEN to SELFPRGEN
- 10. PSR2 to PSRASY
 - PSR10 to PSRSYNC
 - Watchdog Reset to Watchdog System Reset
- 11. Updated C code examples containing old IAR syntax.
- 12. Updated BLBSET description in "SPMCSR Store program memory control and
- status register" on page 290.

 $\textcircled{\mbox{\sc c}}$ 2015 Atmel Corporation. All rights reserved. / Rev. 2545US-AVR-11/2015

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.