INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT374

Octal D-type flip-flop; positive edge-trigger; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT374

FEATURES

- · 3-state non-inverting outputs for bus oriented applications
- · 8-bit positive, edge-triggered register
- · Common 3-state output enable input
- Independent register and 3-state buffer operation
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT374 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT374 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A clock (CP) and an output enable (OE) input are common to all flip-flops.

The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition.

When \overline{OE} is LOW, the contents of the 8 flip-flops are available at the outputs. When OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops.

The "374" is functionally identical to the "534", but has non-inverting outputs.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

CVMDOL	PARAMETER	CONDITIONS	TYP	LINUT	
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	C _L = 15 pF; V _{CC} = 5 V	15	13	ns
f _{max}	maximum clock frequency		77	48	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	17	17	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

 $\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

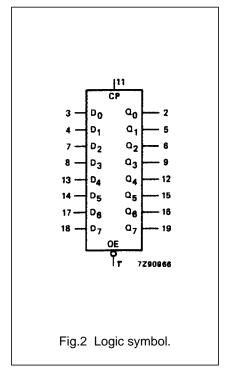
C_L = output load capacitance in pF

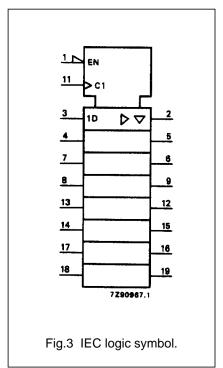
V_{CC} = supply voltage in V

- 2. For HC the condition is $V_I = GND$ to V_{CC}
 - For HCT the condition is $V_I = GND$ to $V_{CC} 1.5 \text{ V}$

ORDERING INFORMATION

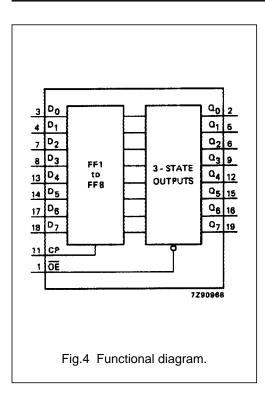

See "74HC/HCT/HCU/HCMOS Logic Package Information".


Octal D-type flip-flop; positive edge-trigger; 3-state


74HC/HCT374

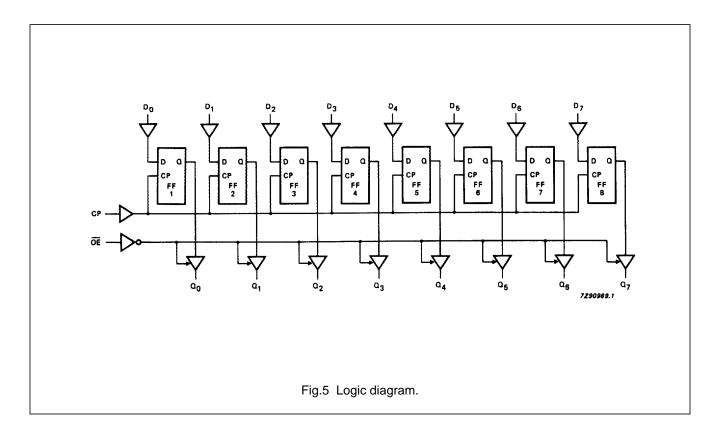
PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	ŌĒ	3-state output enable input (active LOW)
2, 5, 6, 9, 12, 15, 16, 19	Q ₀ to Q ₇	3-state flip-flop outputs
3, 4, 7, 8, 13, 14, 17, 18	D ₀ to D ₇	data inputs
10	GND	ground (0 V)
11	СР	clock input (LOW-to-HIGH, edge-triggered)
20	V _{CC}	positive supply voltage



Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT374



FUNCTION TABLE

OPERATING	II	NPUT	S	INTERNAL	OUTPUTS		
MODES	ΟE	СР	D _n	FLIP-FLOPS	Q ₀ to Q ₇		
load and read register	L	↑	l	L	L		
	L	↑	h	H	H		
load register and disable outputs	H	↑	l	L	Z		
	H	↑	h	H	Z		

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - Z = high impedance OFF-state
 - ↑ = LOW-to-HIGH CP transition

Philips Semiconductors Product specification

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT374

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				-	Γ _{amb} (°	C)				TEST CONDITIONS		
CVMDOL	PARAMETER				74HC] 						
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(•)		
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		50 18 14	165 33 28		205 41 35		250 50 43	ns	2.0 4.5 6.0	Fig.6	
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7	
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to Q_n		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7	
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6	
t _W	clock pulse width HIGH or LOW	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _{su}	set-up time D _n to CP	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.8	
t _h	hold time D _n to CP	5 5 5	-6 -2 -2		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.8	
f _{max}	maximum clock pulse frequency	6.0 30 35	23 70 83		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6	

Philips Semiconductors Product specification

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT374

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT							
ŌĒ	1.25						
CP	0.90						
D _n	0.35						

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS	
SYMBOL	DADAMETED	74HCT									WAVEFORMS
STWIBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		16	32		40		48	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n		16	30		38		45	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time OE to Q _n		18	28		35		42	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	19	11		24		29		ns	4.5	Fig.6
t _{su}	set-up time D _n to CP	12	7		15		18		ns	4.5	Fig.8
t _h	hold time D _n to CP	5	-3		5		5		ns	4.5	Fig.8
f _{max}	maximum clock pulse frequency	26	44		21		17		MHz	4.5	Fig.6

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT374

AC WAVEFORMS

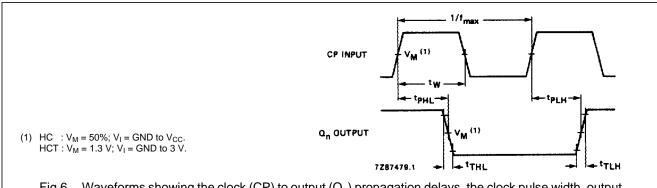
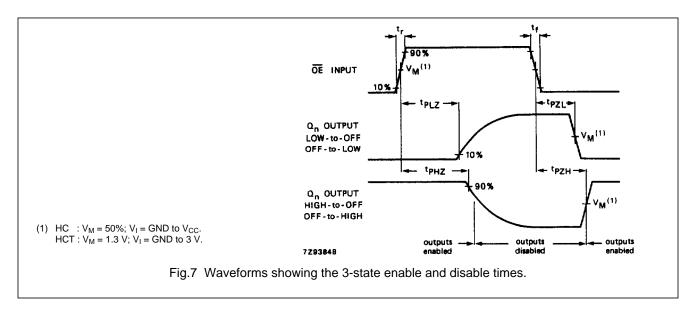
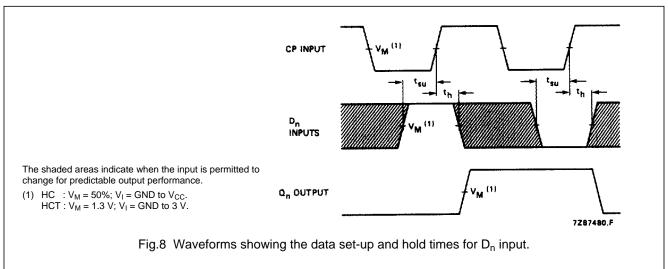




Fig.6 Waveforms showing the clock (CP) to output (Q_n) propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency.

Philips Semiconductors Product specification

Octal D-type flip-flop; positive edge-trigger;
3-state

74HC/HCT374

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.