

TDA7245A

6W AUDIO AMPLIFIER WITH STAND-BY

- STAND-BY FUNCTION
- SUPPLY VOLTAGE RANGE UP TO 30V
- MUSIC POWER = 16W (R_L = 4Ω, d = 10%)
- THERMAL PROTECTION

DESCRIPTION

The TDA7245A is a monolithic integrated circuit in 9+9 POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets.

Figure 1: Test and Application Circuit

Powerdip 9+9
ORDERING NUMBER: TDA7245A

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	30	V
Ι _Ο	Output Peak Current (non repetitive $t = 100\mu s$)	3	А
lo	Output Peak Current (repetitive, f > 20Hz)	2.5	А
P _{tot}	Power Dissipation at T _{amb} = 80°C at T _{case} = 70°C	1 6	W W
T _{stg} , T _j	Storage and junction Temperature	-40 to 150	°C

PIN CONNECTION (Top view)

Figure 2: Schematic Diagram

THERMAL DATA

Symbol	Description	Value	Unit	
R _{th j-case}	Thermal Resistance junction-case	Max	15	°C/W
Rth j-amb	Thermal Resistance junction-ambient	Max	70	°C/W

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		12		30	V
Vo	Quiescent Output Voltage	$V_{\rm S} = 24V$		11.6		V
ld	Quiescent Drain Current	V _S = 28V		24	35	mA
Po	Output Power		6.5	6 5 7.5 6.5 16		W W W W
d	Harmonic Distortion	$P_{O} = 50 \text{mW to 4W}$ f = 1KHz f = 10KHz $V_{S} = 20V, R_{L} = 8\Omega,$ $P_{O} = 50 \text{mW to 3.5W}$ f = 1KHz f = 10KHz		0.15 0.8 0.12 0.5	0.5	% % %
RI	Input Impedance	f = 1kHz	30			KΩ
BW	Small signal bandwidth (-3dB)	$P_0 = 1W$	20 to 40,000			Hz
Gv	Voltage Gain (open loop)	f = 1KHz		75		dB
Gv	Voltage Gain (closed loop)	f = 1KHz	39	40	41	dB
e _N	Total Input Noise	B = 22 - 22,000Hz $R_s = 50\Omega$ $R_s = 1k\Omega$ $R_s = 10k\Omega$		1.7 2 3	6	mV μV μV
S/N	Signal to Noise Ratio	$P_0 = 5W; R_S = 10K\Omega$		86		dB
SVR	Supply Voltage Rejection	$\label{eq:VS} \begin{array}{l} V_S = 16.5V; \ R_L = 8\Omega; \ \ f = 100Hz \\ R_s = 10k\Omega; \ \ V_r = 0.5Vrms \end{array}$	38	45		dB
T _{sd}	Thermal shut-down Junction			150		°C

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{amb} = 25^{\circ}C$, $V_{S} = 16.5V$, $R_{L} = 4\Omega$, f =1kHz; unless otherwise specified).

STAND-BY FUNCTION

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{st-by}	Pin 5 DC Voltage	SW1 Open (play)		6.4		V
Ist-by	Pin 5 Current	SW1 Closed (st-by)		160	280	μA
ATT _{st-by}	Stand-by Attenuation	f = 1kHz	70	90		dB
Vt	Stand-by Threshold (pin 5)			3.8		V
I _{d st-by}	Quiescent Current @ Stand-by			2	4	mA

Note (*):

MUSIC POWER CONCEPT

MUSIC POWER is (according to the IEC clauses n.268-3 of Jan 83) the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1KHz.

According to this definition our method of measurement comprises the following steps:

1) Set the voltage supply at the maximum operating value -20%

2) Apply a input signal in the form of a 1KHz tone burst of 1 sec duration; the repetition period of the signal pulses is > 60 sec 3) The output voltage is measured 1 sec from the start of the pulse 4) Increase the input voltage until the output signal show a THD = 10% 5) The music power is then V_{out}^2 R1, where V_{out} is the output voltage measured in the condition of point 4) and R1 is the rated load impedance

The target of this method is to avoid excessive dissipation in the amplifier.

Figure 3: Output Power vs. Supply Voltage

Figure 4: Output Power vs. Supply Voltage

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.85		1.40	0.033		0.055	
b		0.50			0.020		
b1	0.38		0.50	0.015		0.020	
D			24.80			0.976	
E		8.80			0.346		
е		2.54			0.100		
e3		20.32			0.800		
F			7.10			0.280	
I			5.10			0.201	
L		3.30			0.130		
Z			2.54			0.100	

POWERDIP 18 PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\ensuremath{\mathbb{C}}$ 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

