DATA SHEET

 LOW OHMIG GHIP RESISTORSRL series
5\%, 2\%, I \%
sizes 0402/0603/0805/I206/
[2|0/12|8/20|0/25|2
RoHS compliant \& Halogen Free

YAC=O
Phicomp

SCOPE

This specification describes RL0402 to RL25 I 2 low ohmic chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- Converters
- Printer equipment
- Server board
- Telecom
- Consumer
- Car electronics

FEATURES

- AEC-Q200 qualified
- Halogen Free Epoxy
- RoHS compliant
- Hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- Non-forbidden materials used in products/production
- Low resistances applied to current sensing
- MSL Class: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER \& I2NS

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

RL XXXX X X XX XXXX L
$\begin{array}{llllll}\text { (I) } & \text { (2) } & \text { (3) } & \text { (4) } & \text { (5) } & \text { (6) }\end{array}$
(I) SIZE

0402/0603/0805/|206/1210/12|8/2010/2512
(2) TOLERANCE
$F= \pm 1 \%$
$\mathrm{G}= \pm 2 \%$
J = $\pm 5 \%$
"-" = Jumper ordering
(3) PACKAGING TYPE
$R=$ Paper taping reel $\quad K=$ Embossed taping reel
(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec
(5) TAPING REEL
$07=7$ inch dia. Reel and standard power
$13=13$ inch dia. Reel and standard power
7W $=7$ inch dia. Reel and $2 \times$ standard power (0805 and I206)
(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter $R / K / M$ is decimal point.
Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number'.
(7) DEFAULT CODE

Letter L is system default code for order only (Note)

Resistance rule of global part number	
Resistance code rule	e Example
$\begin{aligned} & \text { ORXXX } \\ & \text { (I to } 976 \mathrm{~m} \Omega \text {) } \end{aligned}$	$\begin{array}{r} O R I=0.1 \Omega \\ O R I 2=0.12 \Omega \\ O R 105=0.105 \Omega \end{array}$
XRXX $\text { (} \text { \| to } 9.76 \Omega \text {) }$	$\begin{array}{r} 1 R=1 \Omega \\ 1 R 5=1.5 \Omega \\ 9 R 76=9.76 \Omega \end{array}$
$\begin{aligned} & \text { XXRX } \\ & (10 \text { to } 97.6 \Omega) \end{aligned}$	$\begin{array}{r} 10 R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & \text { (100 to } 976 \Omega \text {) } \end{aligned}$	$100 \mathrm{R}=100 \Omega$
$\begin{aligned} & X K X X \\ & (1 \text { to } 9.76 \mathrm{~K} \Omega) \end{aligned}$	$\begin{aligned} 1 K & =1,000 \Omega \\ 9 K 76 & =9760 \Omega \end{aligned}$
XMXX (1 to $9.76 \mathrm{M} \Omega$)	$\begin{array}{r} \text { IM }=1,000,000 \Omega \\ 9 \text { M76 }=9,760,000 \Omega \end{array}$

Ordering example

The ordering code of a RL0603 chip resistor, value 0.56Ω with $\pm 1 \%$ tolerance, supplied in 7 -inch tape reel is: RL0603FR-070R56L.

NOTE

I. All our R-Chip products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol can be printed

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

I 2NC CODE

2350 / 2390 / 2322	XXX XXXXX L
(1)	(2) (3) (4)

SIZE	TYPE	$\begin{aligned} & \text { START } \\ & \operatorname{IN}^{(1)} \end{aligned}$	$\begin{aligned} & \text { TOL. } \\ & (\%) \end{aligned}$	RESISTANCE RANGE	$\begin{aligned} & \hline \text { EMBOSSED }{ }^{(2)} \\ & \text { TAPE ON REEL } \\ & \hline 4,000 \end{aligned}$	PAPER/PE (2) TAPE ON REEL (units)	
						5,000	10,000
0402	LRC3I	2350	$\pm 5 \%$	0.05 to \| Ω	-	-	$51320 x x x$
	LRC32	2350	$\pm 1 \%$	0.05 to I Ω	-	-	$51322 x x x$
0603	LRC2I	2350	$\pm 5 \%$	0.01 to I Ω	-	$51210 x x x$	-
	LRC22	2350	$\pm 1 \%$	0.01 to I Ω	-	$51212 x x x$	-
0805	LRCII	2350	$\pm 5 \%$	0.01 to 1Ω	-	51110xxx	-
	LRCI2	2350	$\pm 1 \%$	0.01 to 1Ω	-	51112xxx	-
	LRCIIP	2350	$\pm 1 \%$	0.01 to 1Ω	-	51115xxx	-
	LRCI2P	2350	$\pm 5 \%$	0.01 to 1Ω	-	51117xxx	-
1206	LRCOI	2350	$\pm 5 \%$	0.01 to 1Ω	-	$51010 x x x$	-
	LRC02	2350	$\pm 1 \%$	0.01 to 1Ω	-	$51012 x x x$	-
	LRCOIP	2350	$\pm 1 \%$	0.01 to 1Ω	-	$51901 \times x \times$	-
	LRC02P	2350	$\pm 5 \%$	0.01 to I Ω	-	$5191 \times x \times x$	-
1210	LPRCIOI	2390	$\pm 5 \%$	0.01 to 0.0976Ω	-	$73590 \times x \times$	-
	LPRCIOI	2390	$\pm 5 \%$	0.1 to 1Ω	-	735 60xxx	-
	LPRCIO2	2390	$\pm 1 \%$	0.01 to 1Ω	-	$7353 \times x \times x$	-
1218	LPRC201	2322	$\pm 5 \%$	0.01 to 1Ω	735 64xxx	-	-
	LPRC201	2322	$\pm 1 \%$	0.01 to 1Ω	$7357 \times x \times x$	-	-
2010	LPRCIII	2322	$\pm 5 \%$	0.01 to 0.0976Ω	$76090 x \times x$	-	-
	LPRCIII	2322	$\pm 5 \%$	0.1 to 1Ω	760 60xxx	-	-
	LPRCIII	2322	$\pm 1 \%$	0.01 to 0.0976Ω	$76190 x \times x$	-	-
	LPRCIII	2322	$\pm 1 \%$	0.1 to I Ω	$7616 \times x x x$	-	-
2512	LPRC22I	2322	$\pm 5 \%$	0.01 to 0.0976Ω	762 90xxx	-	-
	LPRC22I	2322	$\pm 5 \%$	0.1 to I Ω	762 60xxx	-	-
	LPRC22I	2322	$\pm 1 \%$	0.01 to 0.0976Ω	763 90xxx	-	-
	LPRC22I	2322	$\pm 1 \%$	0.1 to I Ω	763 6xxxx	-	-

(1) The resistors have a 12 -digit ordering code starting with 2350/2390/2322.
(2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging. (In I2NC code, only 07 " tape reel code is supplied. Supply of $10 " / 13^{\prime \prime}$ tape reel is requested in Global part number ordering code.)
(3) The remaining 4 or 3 digits represent the resistance value with the last digit
indicating the multiplier as shown in the table of "Last digit of 12 NC ".
(4) Letter L is system default code for order only ${ }^{\text {(Note) }}$.
(2)

Last digit of I2NC		
Resistance decade ${ }^{(3)}$		Last digit
0.01 to 0.0976Ω		0
0.1 to 0.976Ω		7
I to 9.76Ω		8
10 to 97.6Ω		9
100 to 976Ω		\|
l to $9.76 \mathrm{k} \Omega$		2
10 to $97.6 \mathrm{k} \Omega$		3
100 to $976 \mathrm{k} \Omega$		4
I to $9.76 \mathrm{M} \Omega$		5
10 to $97.6 \mathrm{M} \Omega$		6
Example:	0.02Ω	0200 or 200
	0.3Ω	3007 or 307
	1Ω	1008 or 108
	$33 \mathrm{k} \Omega$	3303 or 333
	$10 \mathrm{M} \Omega$	1006 or 106

Ordering example

The ordering code of a RL0603 chip resistor, value 0.56Ω with $\pm 1 \%$ tolerance, supplied in tape of 5,000 units per reel is: 23505 I 2 I2567L or RL0603FR-070R56L.

NOTE

I. All our R-Chip products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol can be printed

Fig. I

RL0603: $R \geq 100 \mathrm{~m} \Omega, R=10 / 20 / 30 / 40 / 50 / 60 \mathrm{~m} \Omega$

R22 E-24 series / Non-E series ($R=25 / 40 / 50 / 60 / 250 / 400 / 500 \mathrm{~m} \Omega): 3$ digits

Fig. 2 Value $=22 \mathrm{~m} \Omega$
The " R " is used as a decimal point; the other 2 digits are significant.

RL0805 / RLI 206 / RLI2 10 /RLI2 18 / RL2010 / RL25I2

RI20

E-24 series / Non-E series ($R=25 / 40 / 50 / 60 / 250 / 400 / 500 \mathrm{~m} \Omega$): 4 digits

Fig. 3 Value $=20 \mathrm{~m} \Omega$

For further marking information, please see special data sheet "Chip resistors marking".

CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the resistance value. Finally, the two external terminations (matte tin) are added. See fig. 4.

DJMENSIONS

Table I For outlines see fig. 4

TYPE	$\mathrm{L}(\mathrm{mm})$	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{I}_{1}(\mathrm{~mm})$	$\mathrm{I}_{2}(\mathrm{~mm})$

$\begin{array}{lllllll}\text { RL0402 } & 1.00 \pm 0.10 & 0.50 \pm 0.05 & 0.35 \pm 0.05 & 0.20 \pm 0.10 & 0.25 \pm 0.10\end{array}$
RL0603 1.60 $\pm 0.10 \quad 0.80 \pm 0.10 \quad 0.45 \pm 0.10 \quad 0.25 \pm 0.15 \quad 0.25 \pm 0.15$
$\begin{array}{lllllll}\text { RLO805 } 2.00 \pm 0.10 & 1.25 & \pm .10 & 0.50 \pm 0.10 \quad 0.35 \pm 0.20 & 0.35 \pm 0.20\end{array}$
RLI206 $3.10 \pm 0.10 \quad 1.60 \pm 0.10 \quad 0.55 \pm 0.10 \quad 0.45 \pm 0.20 \quad 0.40 \pm 0.20$
RLI2IO $3.10 \pm 0.10 \quad 2.60 \pm 0.15 \quad 0.55 \pm 0.10 \quad 0.50 \pm 0.20 \quad 0.50 \pm 0.20$

RLI2I8	3.05				
0.15	4.60 ± 0.20	0.55	± 0.10	0.45	± 0.25
0.50	± 0.25				

RL2010 $5.00 \pm 0.10 \quad 2.50 \pm 0.15 \quad 0.55 \pm 0.10 \quad 0.60 \pm 0.20 \quad 0.50 \pm 0.20$
$\begin{array}{ll}\text { RL25I2 } & 6.35 \pm 0.10 \quad 3.20 \pm 0.15 \quad 0.55 \pm 0.10 \quad 0.60 \pm 0.20 \quad 0.50 \pm 0.20\end{array}$

OUTLINES

Fig. 4 Chip resistor outlines

ELECTRUCAL CHARACTERISTISS

Table 2

Type	Power P_{70}	Operating Temp. range	Resistance range \& tolerance		T. C. R. ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$)	Jumper criteria	
RL0402	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	E24 $\pm 1 \%, \pm 2 \%, \pm 5 \%$	$50 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$	See following table "T.C.R.- RL series"	Max. resistance Rated current	$\begin{aligned} & \hline 20 \mathrm{~m} \Omega \\ & 1.5 \mathrm{~A} \end{aligned}$
RL0603	I/IOW			$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		Max. resistance Rated current	$\begin{aligned} & 20 \mathrm{~m} \Omega \\ & 2 \mathrm{~A} \\ & \hline \end{aligned}$
RL0805	I/8W			$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		Max. resistance Rated current	$\begin{aligned} & \hline 20 \mathrm{~m} \Omega \\ & 2.5 \mathrm{~A} \\ & \hline \end{aligned}$
	I/4W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		--	--
RLI 206	I/4W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$		$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		Max. resistance Rated current	$\begin{aligned} & 20 \mathrm{~m} \Omega \\ & 3.5 \mathrm{~A} \\ & \hline \end{aligned}$
	$1 / 2 \mathrm{~W}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		--	--
RLI 210	I/2W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$		$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		--	--
RLI218	IW			$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		--	--
RL2010	$3 / 4 \mathrm{~W}$			$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		--	--
RL2512	IW			$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$		--	--

TYPE /	RESISTANCE RANGE	TEMPERATURE COEFFICIENT OF RESISTANCE					
		$50 \mathrm{~m} \Omega \leq \mathrm{R}<100 \mathrm{~m} \Omega$		$100 \mathrm{~m} \Omega \leq \mathrm{R}<500 \mathrm{~m} \Omega$		$500 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$	
		$\pm 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		$\pm 800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
		$10 \mathrm{~m} \Omega \leq R \leq 36 \mathrm{~m} \Omega$		$6 \mathrm{~m} \Omega<\mathrm{R} \leq 91 \mathrm{~m} \Omega$	$91 \mathrm{~m} \Omega<\mathrm{R} \leq 500 \mathrm{~m} \Omega \quad 5$		$500 \mathrm{~m} \Omega<\mathrm{R}<1 \Omega$
		$\pm 1,500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		$\pm 1,200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RL0805		$10 \mathrm{~m} \Omega \leq R \leq 18 \mathrm{~m} \Omega$	$18 \mathrm{~m} \Omega<\mathrm{R} \leq 47 \mathrm{~m} \Omega$	$47 \mathrm{~m} \Omega<\mathrm{R} \leq 91 \mathrm{~m} \Omega$	$91 \mathrm{~m} \Omega<\mathrm{R} \leq 360 \mathrm{~m} \Omega$	$360 \mathrm{~m} \Omega<\mathrm{R}<500 \mathrm{~m} \Omega$	$500 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$
		$\pm 1,500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		$10 \mathrm{~m} \Omega \leq \mathrm{R} \leq 18 \mathrm{~m} \Omega$	$18 \mathrm{~m} \Omega<\mathrm{R} \leq 47 \mathrm{~m} \Omega$	$47 \mathrm{~m} \Omega<\mathrm{R} \leq 91 \mathrm{~m} \Omega$	$91 \mathrm{~m} \Omega<\mathrm{R} \leq 360 \mathrm{~m} \Omega$	$360 \mathrm{~m} \Omega<R \leq 500 \mathrm{~m} \Omega$	$500 \mathrm{~m} \Omega<\mathrm{R}<1 \Omega$
RLI 206	$10 \mathrm{~m} \Omega \leq R<1 \Omega$	$\pm 1,500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RLI210		$\pm 1,500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RL2010		$\pm 1,500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RL2512		$\pm 1,500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1,200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RLI 218	$10 \mathrm{~m} \Omega \leq \mathrm{R}<1 \Omega$	$10 \mathrm{~m} \Omega \leq R \leq 30 \mathrm{~m} \Omega$		$30 \mathrm{~m} \Omega<R \leq 56 \mathrm{~m} \Omega$	$56 \mathrm{~m} \Omega<\mathrm{R} \leq 180 \mathrm{~m} \Omega$		$180 \mathrm{~m} \Omega<R<1 \Omega$
		$\pm 2,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		$\pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		$\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

POOTPRINT AND SOLDERING PROFLES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

PACKING STYLE	REEL DIMENSION	RL0402	RL0603	RL0805	RLI 206	RLI2IO	RLI218	RL2010	RL25I2
Paper taping reel (R)	7" (178 mm)	10,000	5,000	5,000	5,000	5,000	---	---	---
	$13^{\prime \prime}(330 \mathrm{~mm})$	50,000	20,000	20,000	20,000	20,000	---	---	---
Embossed taping reel (K)	7" (178 mm)	---	---	---	---	---	4,000	4,000	4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATINGTEMPERATURE RANGE

Normal Power: Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$ (Fig. 5)
Double Power: Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Fig. 6)

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$:
RL0402=I/I6 W;
RL0603=I/IO W;
RL0805=1/8 W, I/4W;
RLI 206=1/4 W, I/2W;
RLI $210=1 / 2 \mathrm{~W}$;
RLI218=1 W;
RL2010=3/4 W;
RL25I2=I W.

Rated voltage

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:
$V=\sqrt{(P \times R)}$
Where
$\mathrm{V}=$ Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)
$R=$ Resistance value (Ω)

Fig. 5 Maximum dissipation ($\mathrm{P}_{\max }$) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

Fig. 6 Maximum dissipation $\left(P_{\max }\right)$ in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

TESTS AND RE@UUREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/	IEC $60\|\|5-\| 4.25 .1$	1,000 hours at $70 \pm 2^{\circ} \mathrm{C}$ applied RCW	$\pm(2 \%+0.5 \mathrm{~m} \Omega)$
Endurance	MIL-STD-202 Method I08A	1.5 hours on, 0.5 hour off, still air required	

High Temperature \quad IEC $60068-2-2$	I,000 hours at maximum operating
Exposure	temperature depending on specification,
	unpowered
	No direct impingement of forced air to the
	parts
	Normal power : Tolerances: $155 \pm 5^{\circ} \mathrm{C}$
	Double power : Tolerances: $125 \pm 5^{\circ} \mathrm{C}$

Moisture Resistance	MIL-STD-202 Method I06G	Each temperature / humidity cycle is defined at 8 hours, 3 cycles $/ 24$ hours for 10 d with $25^{\circ} \mathrm{C}$ $165^{\circ} \mathrm{C} 95 \%$ R.H, without steps 7a \& 7b, unpowered	$\pm(2 \%+0.5 \mathrm{~m} \Omega)$
		Parts mounted on test-boards, without condensation on parts	

Thermal Shock	MIL-STD-202 Method I07G	$-55 /+125^{\circ} \mathrm{C}$	$\pm(1 \%+0.5 \mathrm{~m} \Omega)$
		Number of cycles required is 300 .	
		Devices mounted	
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes.	
Short time overload	IEC60115-1 4.13	RL standard power: 2.5 times rated voltage for 5 sec at room temperature	$\pm(2 \%+0.5 \mathrm{~m} \Omega)$ No visible damage
		RL high power: 5 times rated power for 5 sec at room temperature	
Board Flex/ Bending	IEC 60115-1 4.33	Device mounted on PCB test board as described, only I board bending required	$\pm(1 \%+0.5 \mathrm{~m} \Omega)$ No visible damage
		3 mm bending	
		Bending time: 60 ± 5 seconds	
		Ohmic value checked during bending	

\qquad

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability			
- Wetting	J-STD-002 test B	Electrical Test not required	Well tinned ($\geq 95 \%$ covered)
		Magnification 50X	No visible damage
		SMD conditions:	
		\|st step: method B , aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat	
		$2^{\text {nd }}$ step: leadfree solder bath at $245 \pm 3^{\circ} \mathrm{C}$	
		Dipping time: 3 ± 0.5 seconds	
- Leaching	J-STD-002 test D	Leadfree solder, $260^{\circ} \mathrm{C}, 30$ seconds immersion time	No visible damage
- Resistance to Soldering Heat	IEC 60115-1 4.18	Condition B, no pre-heat of samples.	$\pm(1 \%+0.5 \mathrm{~m} \Omega)$
		Leadfree solder, $260^{\circ} \mathrm{C}, 10$ seconds immersion time	No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	

REVISION	DATE	CHANGE NOTIFICATION
Version I	Des. 16, 2015	-
Version 0	Nov. 11, 2014	- Extend 0805 T.C.R. range

