INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT2809-bit odd/even parity generator/checker

Product specification
File under Integrated Circuits, IC06

December 1990

9-bit odd/even parity generator/checker

74HC/HCT280

FEATURES

- · Word-length easily expanded by cascading
- Similar pin configuration to the "180" for easy system up-grading
- Generates either odd or even parity for nine data bits
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT280 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT280 are 9-bit parity generators or checkers commonly used to detect errors in high-speed data

transmission or data retrieval systems. Both even and odd parity outputs are available for generating or checking even or odd parity up to 9 bits.

The even parity output (Σ_E) is HIGH when an even number of data inputs $(I_0$ to $I_8)$ are HIGH. The odd parity output (Σ_0) is HIGH when an odd number of data inputs are HIGH.

Expansion to larger word sizes is accomplished by tying the even outputs ($\Sigma_{\rm E}$) of up to nine parallel devices to the data inputs of the final stage. For a single-chip 16-bit even/odd parity generator/checker, see PC74HC/HCT7080.

APPLICATIONS

- 25-line parity generator/checker
- 81-line parity generator/checker

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
	PARAIVIETER	CONDITIONS	НС	нст	ONII
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V			
	I_n to Σ_E		17	18	ns
	I_n to Σ_O		20	22	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipationcapacitance per package	notes 1 and 2	65	65	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

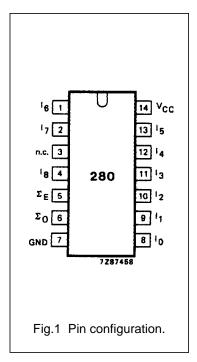
C_L = output load capacitance in pF

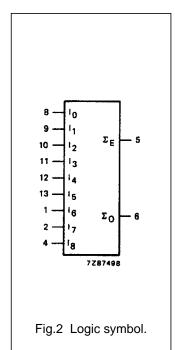
V_{CC} = supply voltage in V

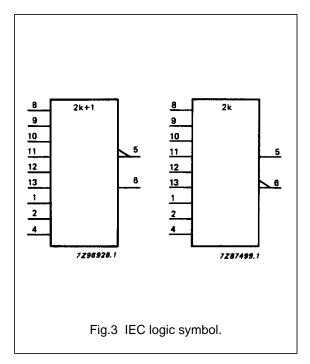
2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

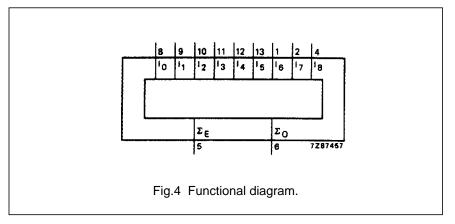

See "74HC/HCT/HCU/HCMOS Logic Package Information".


9-bit odd/even parity generator/checker


74HC/HCT280

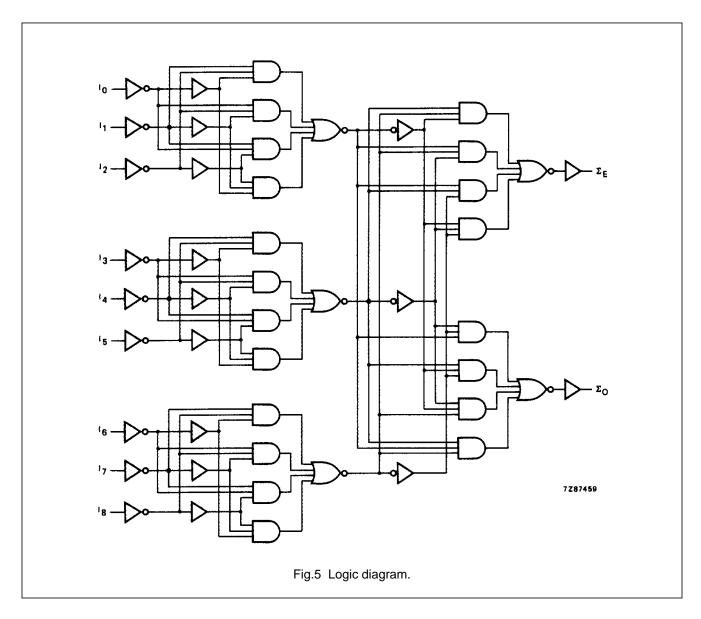
PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
8, 9, 10, 11, 12, 13, 1, 2, 4	I ₀ to I ₈	data inputs					
5, 6	Σ_{E}, Σ_{O}	parity outputs					
7	GND	ground (0 V)					
14	V _{CC}	positive supply voltage					



9-bit odd/even parity generator/checker

74HC/HCT280



FUNCTION TABLE

INPUTS	OUTPUTS			
number of HIGH data inputs (I ₀ to I ₈)	Σ_{E}	Σο		
even odd	ΙJ	L H		

Note

H = HIGH voltage level
 L = LOW voltage level

9-bit odd/even parity generator/checker

74HC/HCT280

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Out put capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									WAVEFORMS
STIVIBUL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	VVAVEFORING
		min.	typ.	max.	min.	max.	min.	max.		(1)	
t _{PHL} / t _{PLH}	propagation delay $\mbox{I}_{\mbox{\scriptsize n}}$ to $\Sigma_{\mbox{\scriptsize E}}$		55 20 16	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay $\mbox{I}_{\mbox{\scriptsize n}}$ to $\Sigma_{\mbox{\scriptsize O}}$		63 23 18	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6

9-bit odd/even parity generator/checker

74HC/HCT280

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
In	1.0

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									WAVEFORMS
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_E		21	42		53		63	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_O		26	45		56		68	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6

9-bit odd/even parity generator/checker

74HC/HCT280

AC WAVEFORMS

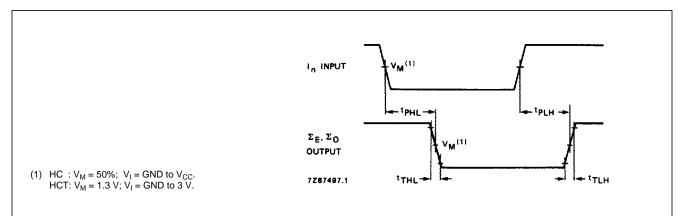
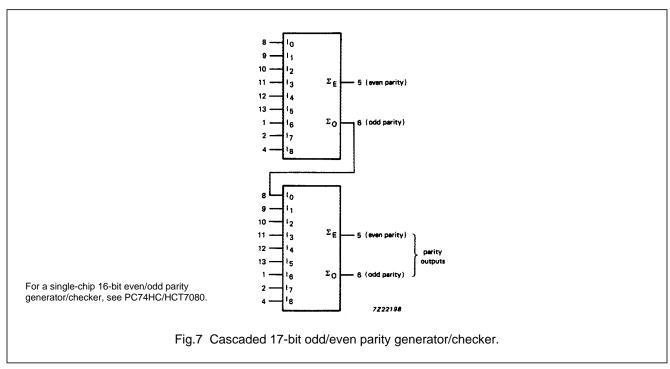



Fig.6 Waveforms showing the data input (I_n) to parity outputs (Σ_E , Σ_O) propagation delays and the output transition time.

APPLICATION INFORMATION

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.