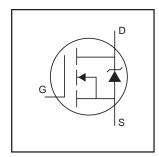
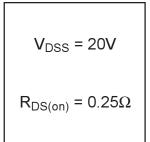
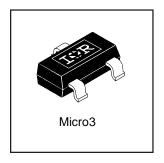
International **Example Control **Texample C

IRLML2402


HEXFET® Power MOSFET


- Generation V Technology
- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching


Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

A customized leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	1.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	0.95	Α
I _{DM}	Pulsed Drain Current ①	7.4	
P _D @T _A = 25°C	Power Dissipation	540	mW
	Linear Derating Factor	4.3	mW/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient @		230	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
-	Otatia Busin ta Oceana On Busintana			0.25		V _{GS} = 4.5V, I _D = 0.93A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.35	Ω	V _{GS} = 2.7V, I _D = 0.47A ③
V _{GS(th)}	Gate Threshold Voltage	0.70			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9fs	Forward Transconductance	1.3			S	$V_{DS} = 10V, I_D = 0.47A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		V _{DS} = 16V, V _{GS} = 0V
DSS	Drain-to-Gource Leakage Guiterit			25	μA	V _{DS} = 16V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
IGSS	Gate-to-Source Reverse Leakage			100	''^	V _{GS} = 12V
Qg	Total Gate Charge		2.6	3.9		$I_D = 0.93A$
Q _{gs}	Gate-to-Source Charge		0.41	0.62	nC	V _{DS} = 16V
Q _{gd}	Gate-to-Drain ("Miller") Charge		1.1	1.7		V_{GS} = 4.5V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		2.5			V _{DD} = 10V
t _r	Rise Time		9.5		no	$I_D = 0.93A$
t _{d(off)}	Turn-Off Delay Time		9.7		ns	$R_G = 6.2\Omega$
t _f	Fall Time		4.8			R_D = 11 Ω , See Fig. 10 ③
C _{iss}	Input Capacitance		110			V _{GS} = 0V
Coss	Output Capacitance		51		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		25			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions							
Is	Continuous Source Current			0.54		MOSFET symbol							
	(Body Diode)			0.54	Α	showing the							
I _{SM}	Pulsed Source Current			7.4	, ,	integral reverse							
	(Body Diode) ①		_ _				_	_		7.4	7.4		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 0.93$ A, $V_{GS} = 0$ V ③							
t _{rr}	Reverse Recovery Time		25	38	ns	$T_J = 25$ °C, $I_F = 0.93A$							
Q _{rr}	Reverse RecoveryCharge		16	24	nC	di/dt = 100A/µs ③							

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} @ & I_{SD} \leq 0.93A, & di/dt \leq 90A/\mu s, & V_{DD} \leq V_{(BR)DSS}, \\ & T_J \leq 150 ^{\circ} C \end{tabular}$

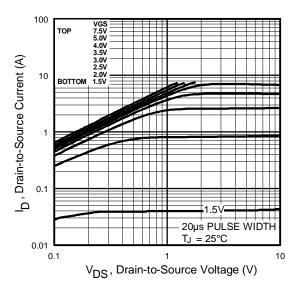


Fig 1. Typical Output Characteristics

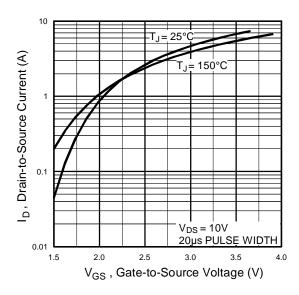


Fig 3. Typical Transfer Characteristics

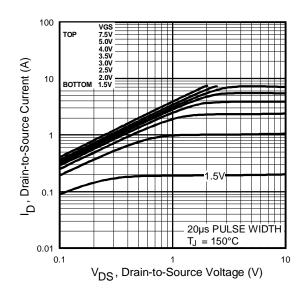
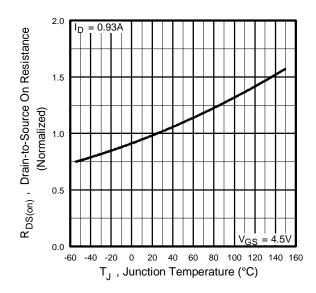
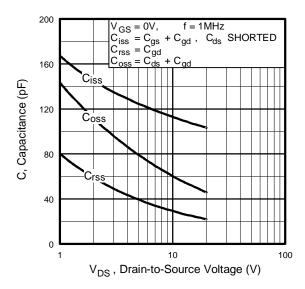




Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

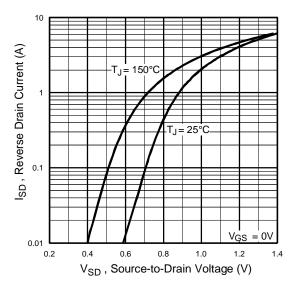
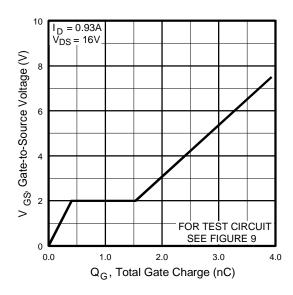



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

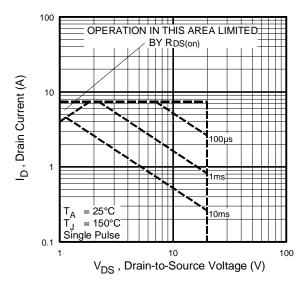


Fig 8. Maximum Safe Operating Area

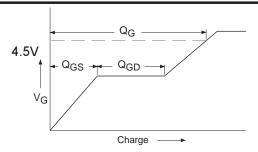


Fig 9a. Basic Gate Charge Waveform

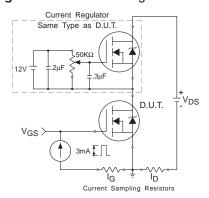


Fig 9b. Gate Charge Test Circuit

Fig 10a. Switching Time Test Circuit

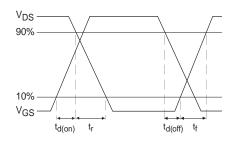


Fig 10b. Switching Time Waveforms

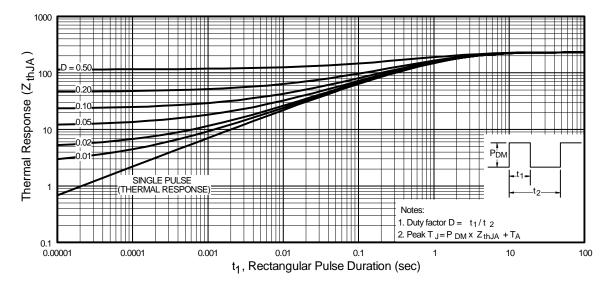
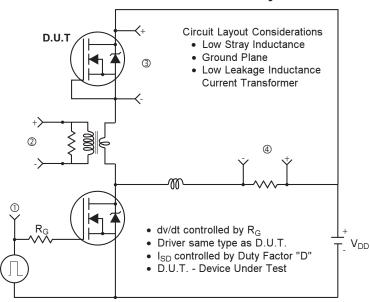



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Peak Diode Recovery dv/dt Test Circuit

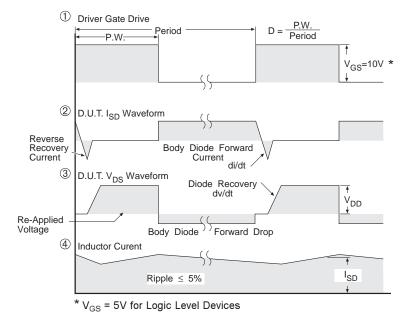
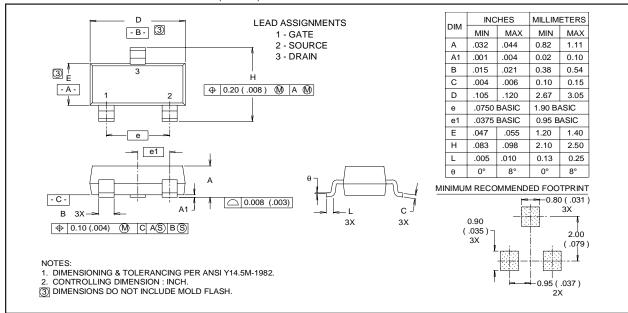
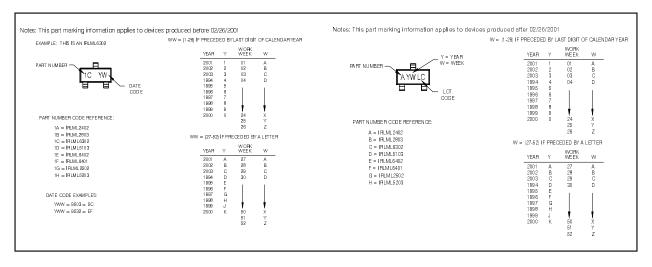
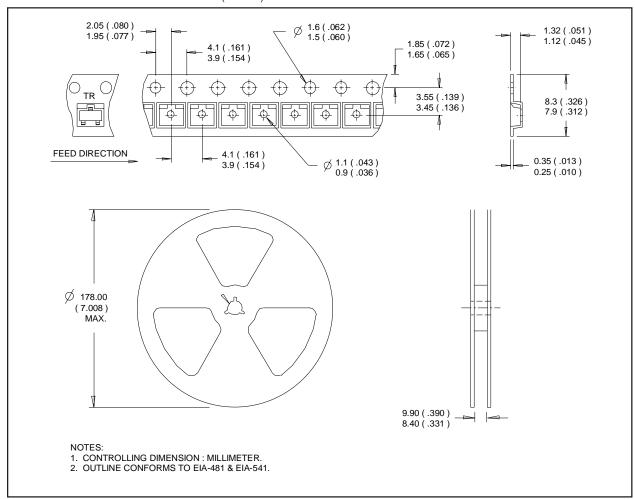



Fig 12. For N-Channel HEXFETS


Package Outline

Micro3 (SOT-23 / TO-236AB)

Dimensions are shown in millimeters (inches)


Part Marking Information Micro3 (SOT-23 / TO-236AB)

Tape & Reel Information

Micro3 (SOT-23 / TO-236AB)

Dimensions are shown in millimeters (inches)

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 01/03

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.