

モノリシックリニア集積回路 デーブレコーダ_用 2.7W AFパワーアンプ

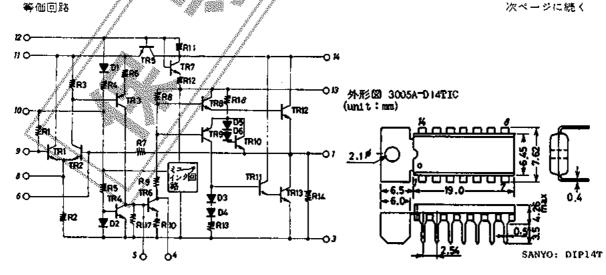
◇ 色制単品カタログ McC448C とさしかえてください。

特長 ・高出力 2.7% typ/3.2Ω が得られる。

- ・ミューティング回路内蔵のため ショック音が小さい。
- ・リップルフィルタ内蔵のため リップル除去率が良い。
- ・滅電圧特性が優れている。
- ・高域周波数でのスイッチングひずみが出ない。
- ・チューナおよびプリアンプ用の低リップル電源端子を備えて必る。
- 出力飽和時の音質がソフトである。

- 武大定格/Ta≃25

最大電源電圧	V _{CC} max	信号時	and the state of t	11	γ
		無信号時	all and the state of the state	13	V 🐇
許容消費電力	Pd max(I)	,	11 m	1.2	₩
	Pd max(2)	gerene".		2, 25*	T and
11 ピン流出電流	111	負荷抵抗	30Ω1%.1±	20	mA
動作周囲混度	$\mathbf{r}_{\mathrm{opg}}$	de de la companya de	—20 ~	-+-70	/ *p/
保存周围温度	T _{stg}		-40-	+150 /	/°C
※ 50×50×1.5‱ ³ ஊர	首付プリント基	仮使用.		*** //	p.


推奨動作条件/Ta=25℃

unit 9 γ 2~8 Ω

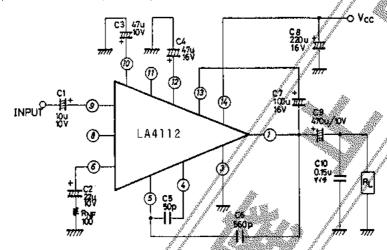
unit

動作特性/T_a=25℃、V_{CC}=9V、R_L=3、2Ω、f=1kHz、Rg=600Ω。指定回路において(次ページ応用回路例1に準する)。

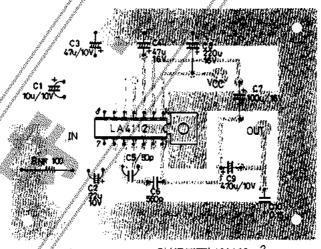
		11	min	tуp	me.x	uni t
無信号電流	# // Icco	great the state of		15	25	mA
電圧利得	// <u>yg(1)</u>	動ループグ		68		dB
	/ / ///////////////////////////////////	H) No of of	42	45	48	đВ
出力電力	***************************************	$R_{L}=3.2\Omega$, THD=10%	2.1	2. 7		W
	- / / * * * * * * * * * * * * * * * * * * *	$R_L \neq 4\Omega$, THD=10%	1.7	2.3		W
Out CELL Date	-	aff aft		**		- 61tr /

〒370-05 評馬県大東町城田180

東京三洋電機株式会社 半導体事業本部


TEL 0276-63-2111 (大代表)

D074Y0外変/D068Y0色/0057Y0/9197Y0 土青コ/5197Y0 8-2431 Na448-1/7


前ページから続く.

. Ly	D WEX	uni t
20	k	Ω
	2,0	20
	2, 5	/pV
	0.8	y day
		20k 2.0 2.5

■ 応用回路例1/ テープレコーダ,ラジオ用パワーアンプ

11番ピン端子電圧は 約VCC Vで電流は 30mAまでとりだせる。

-ン例(鋼箔面)60×80mm²

外付部品の役割とその説明

このコンデアサば、直流電流阻止用であり ベースに加わる直流電流が交流信号源に流れ込まないよう にするための必必で低域必要帯域により選ぶ、また スターティングタイムにも影響し 容量が小さい も違くなる。

C₂(22 μF) およびR_{NF}: 帰遺定数

閉回路の電圧利得を決定する定数であり C_2 および R_{NPP} は次式により求める・

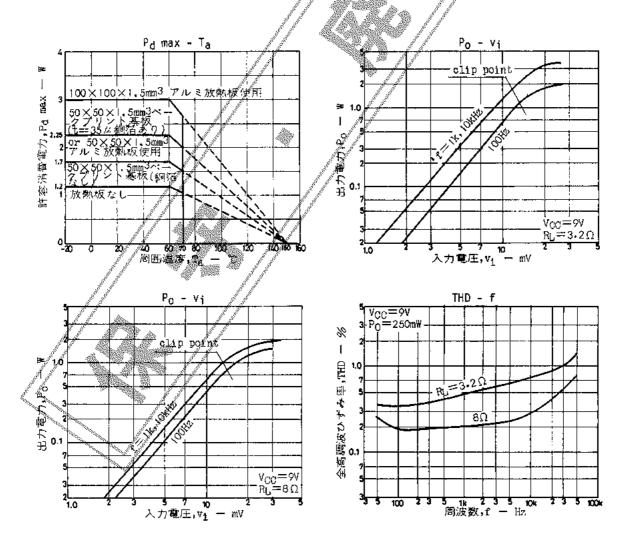
fL;低域しゃ断周波数 $c_2 = \frac{1}{2^{\pi}f_L \cdot R_{NF}}$, $R_{NF} = \frac{20k}{Av}$

Av: 閉回路電圧利得(倍)

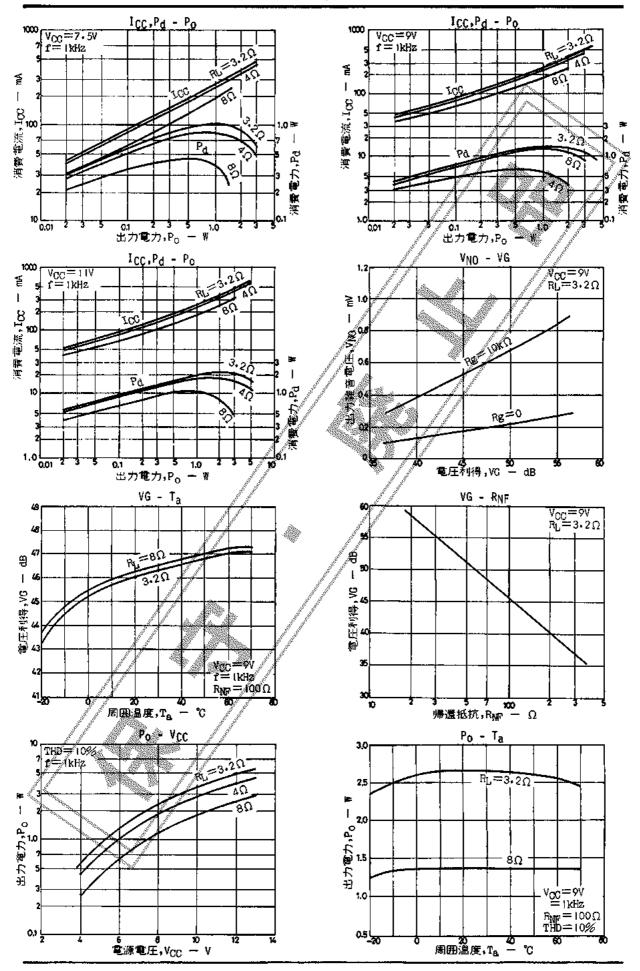
また スターティングタイムに直接影響するので 低域必要帯域との兼ね合いで決定する.

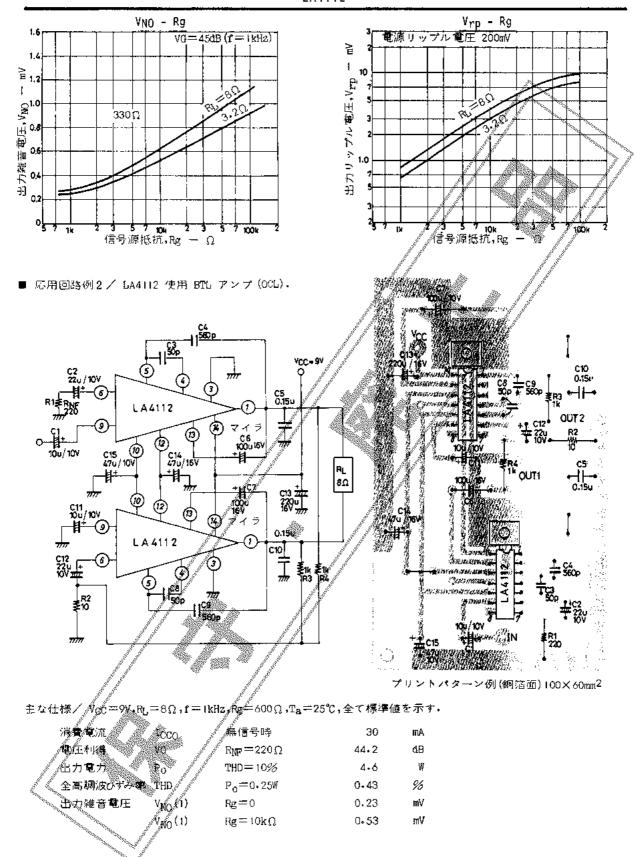
C3: リップル軽減用コンテンサ(47 MF) 初段ペースへの ハムリップル混入防止で 大きい方が効果は大であるが パワーのスターティングタイムに関係するため 両者の兼ね合いが必要である。

 C_4 : リップルフィルタのデカップリングコンデンサ(47 μ F) リップルフィルタ回路において 電源リップルをパイパスするためのコンデンサである.


C5, C6: 発振防止用コンデンサ(C5=50pF, C6=560pF) 高域の周波数帯をカットすることにより 発振防止をしている。 また C6 により高域必要帯域を決定する。


C7: ブートストラップコンデンサ(100 MF) このコンデンサがないと出力波形の片側がクリップする. また 容量としては 大きい方数 SW の時の パルスが小さくなる・


C8: 電源のハムおよび リップルのフィルタ用コンデンサ (220 μF) AC電源の場合は 大きい容量が必要であり DC電源の場合は必ぎくてもよ


 C_9 : 出力コンデンサ(470 μ F) 出力コンデンサの容量は 低域しゃ断周波数と負荷抵抗 R_L により次数により求める $C_9 = \frac{1}{2^m f_1 \cdot R_1}$

C₁₀: 発振防止用コンデンサ 周波数特性,温度特性の良好なマイラコンデンカを使用する・

IC 使用上の注意

1. 最大定格

最大定格付近で使用した場合 わずかの条件変動でも最大定格を越えることがあり 破壊事故をまねくので 電源電圧等の変動のマージンを十分に取り 最大定格を絶対に越えない範囲で使用する。

2. ピン間短絡

ピン間を短絡したままで、電源を投入した場合、破壊および劣化の原因となるので、ICを基板に取り付ける際には、ピン間が半田等で短絡していないかどうか、確認してから電源投入する。

3. 黄荷短絡

黄荷短絡した状態で長く使用すると ICが破壊する恐れがあるため注意する。

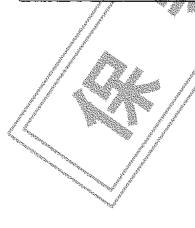
4. 時定数の設定

14ピン (V_{CC}), 12ピン (1 ップル フィルタ), 11ピン (1 Pre, Tunerの1 の電圧が反転する。 異常動作を起すことがあるため スイッチ オフ時にも 11, 12, 14ピンの電位関係が反転しないような時定数に設定する・

5. ラジオ または ラジオカセットに使用の際は ICとパーアジデナとの襲撃は十分難しず使用する.

パターンを作成する場合の注意

- ・ 入力端子と出力端子を接近させないようにする・
- ・ 入力カップリングコンデンサとブートストラップ ガンデンサ を近づけない ようにする・
- ・ 出力ラインのアースは 太く できれば電源アーダと風光を表上点アースとずる・
- 入力アースと帰還アースを同一とする。


放熟板の注意

・ ベーク基板を用いて 放熟させる場合は ICのタフを半田で対して ベーク銅箔面をできるだけ大きく とる・

■特許の非保証について:

この資料は正確かつ信頼すべきものであると確信しております。ただしその使用にあたって、工業所有権その他の権利の実施に対する保証。または実施権の許諾を行なっものではありません。

Information furnished by SANYO is believed to be accurate and reliable. However, no responsibility is assumed by SANYO for its use, and for any infringements of patents or other rights of third parties which may result from its use, and no license is granted by implication or otherwise ander any patent or patent rights of SANYO.

