FAIRCHILD

SEMICONDUCTOR TM

MM74HCT05 Hex Inverter (Open Drain)

General Description

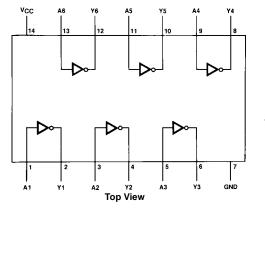
The MM74HCT05 is a logic function fabricated by using advanced silicon-gate CMOS technology, which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. The device is also input and output characteristic and pinout compatible with standard DM74LS logic families. The MM74HCT05 open drain Hex Inverter requires the addition of an external resistor to perform a wire-NOR function.

All inputs are protected from static discharge damage by internal diodes to V_{CC} and ground.

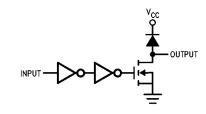
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

February 1984 Revised January 2005

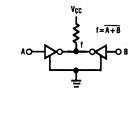
Features


- Open drain for wire-NOR function
- LS-TTL pinout and threshold compatible
- Fanout of 10 LS-TTL loads
- Typical propagation delays: t_{PZL} (with 1 kΩ resistor) 10 ns
 - t_{PLZ} (with 1 k Ω resistor) 8 ns

Ordering Code:


Order Number	Package Number	Package Description			
MM74HCT05M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM74HCT05SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
MM74HCT05MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HCT05N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Pb-Free package per JEDEC J-STD-020B.


Connection Diagram

Logic Diagram

Typical Application

© 2005 Fairchild Semiconductor Corporation DS005358

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (VIN)	–1.5 to $V_{CC}\text{+1.5V}$
DC Output Voltage (V _{OUT})	-0.5 to +7.0V
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	+ 25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units			
Supply Voltage (V _{CC})	4.5	5.5	V			
DC Input Voltage (VIN)	0	V _{CC}	V			
Output Voltage (V _{OUT})	0	5.5	V			
Operating Temperature Range (T _A)	-40	+85	°C			
Input Rise or Fall Times						
(t _r , t _f)		500	ns			
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values be	eyond whi	ch dam-			
Note 2: Unless otherwise specified all voltages are referenced to ground.						
Note 3: Power Dissipation temperature derating		tic "N" pag	kada			

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

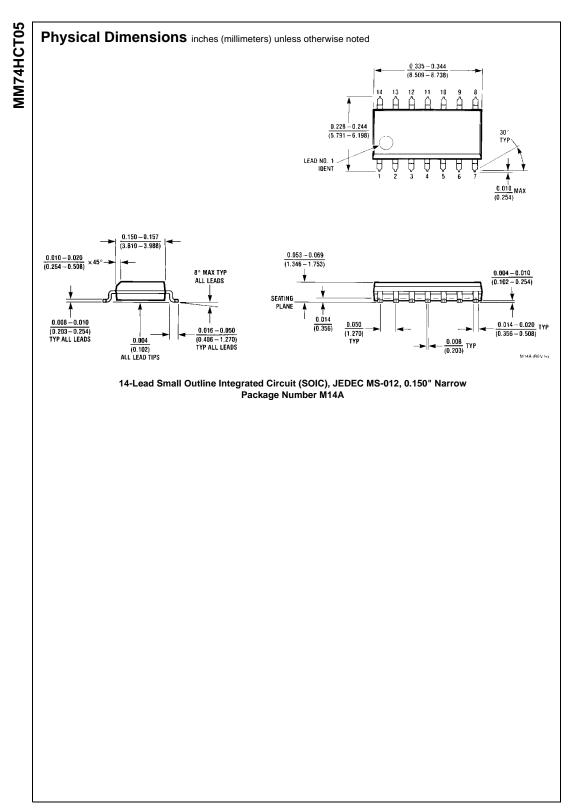
(V_{CC} = 5V \pm 10%, unless otherwise specified)

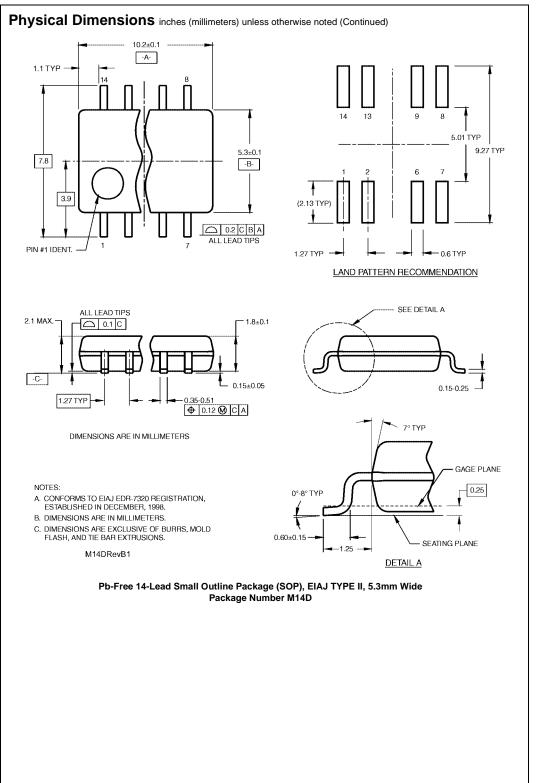
Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	Units
			Typ Guara		nteed Limits	
V _{IH}	Minimum HIGH Level Input Voltage			2.0	2.0	V
V _{IL}	Maximum LOW Level Input Voltage			0.8	0.8	V
V _{OL}	Maximum LOW	$V_{IN} = V_{IH}$				
	Level Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	v
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND,		± 0.1	± 1.0	μA
		V _{IH} or V _{IL}				μΑ
I _{LKG}	Maximum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL},$		0.5	5.0	μΑ
	Output Leakage Current	$V_{OUT} = V_{CC}$				
Icc	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		2.0	20	μΑ
	Supply Current	$I_{OUT} = 0\mu A$				
		V _{IN} = 2.4V or 0.5V (Note 4)		0.3	0.4	mA
I _{OHZ}	Off State Current	$V_{CC} = 4.5 - 5.5, V_O = 5.5$			10	μA

Note 4: This is measured per input with all other inputs held at V_{CC} or ground.

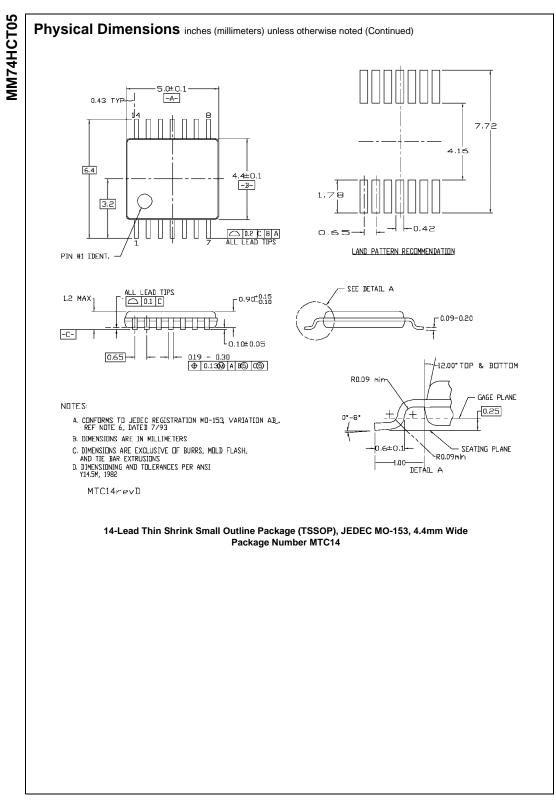
 v_{CC} = 5V, T_A = 25°C, C_L = 15 pF, t_r = t_f = 6 ns unless otherwise noted.

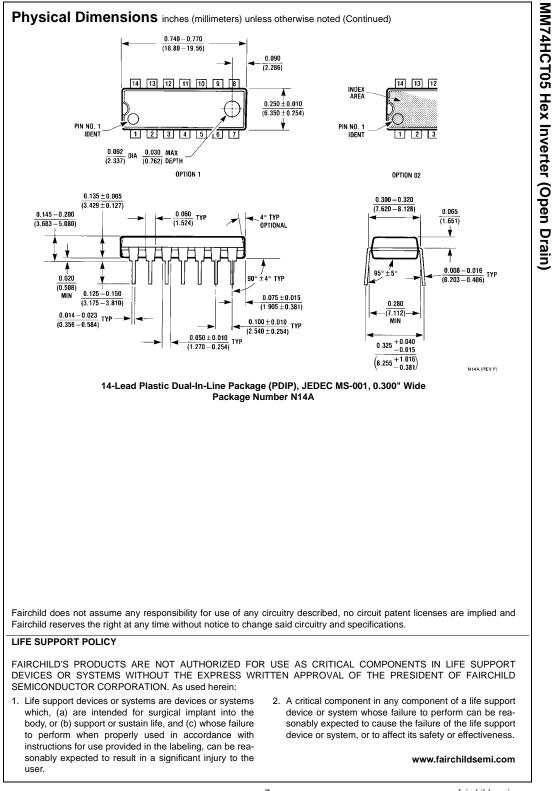
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PZL}	Maximum Propagation Delay	$R_L = 1 k\Omega$	8	15	ns
t _{PLZ}	Maximum Propagation Delay	$R_L = 1 \ k\Omega$	9	16	ns


MM74HCT05


AC Electrical Characteristics

 v_{CC} = 5V, \pm 10%, C_L = 50pF, t_r = t_f = 6 ns unless otherwise specified.


Symbol	Parameter	Conditions	T _A =	25°C	$T_A=-40$ to $85^\circ C$	Units
			Тур	Guara	nteed Limits	Units
t _{PZL}	Maximum Propagation Delay	$R_L = 1k\Omega$	10	22	28	ns
t _{PLZ}	Maximum Propagation Delay	$R_L = 1 k\Omega$	12	20	25	ns
t _{THL}	Maximum Output Fall Time		10	15	19	ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate) $R_L = \infty$		20		pF
C _{IN}	Maximum Input Capacitance			5	10	pF


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2$ f+I_{CC} V_{CC}, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HCT05

www.fairchildsemi.com

7

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.