

STN3NF06L

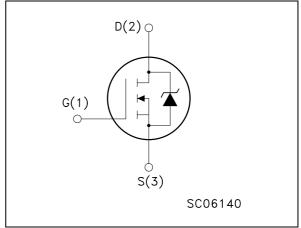
N-channel 60 V, 0.07 Ω 4 A, SOT-223 STripFET™ II Power MOSFET

Features

Туре	V _{DSS} (@Tjmax)	R _{DS(on)} max	I _D
STN3NF06L	60 V	< 0.1 Ω	4 A

- Exceptional dv/dt capability
- Avalanche rugged technology
- 100% avalanche tested
- Low threshold drive

Application


Switching applications

Description

This Power MOSFET is the latest development of STMicroelectronics unique "single feature size" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STN3NF06L	3NF06L	SOT-223	Tape and reel

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	9
5	Revision history1	1

1

Electrical ratings

Table 2. Absolute maximum rat

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	60	V
V _{GS}	Gate-source voltage	± 16	V
I _D ⁽¹⁾	Drain current (continuous) at $T_C = 25 \text{ °C}$	4	А
Ι _D	Drain current (continuous) at T _C =100 °C	2.9	А
I _{DM} ⁽²⁾	Drain current (pulsed)	16	Α
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	3.3	W
	Derating factor	0.026	W/°C
dv/dt ⁽³⁾	Peak diode recovery voltage slope	10	V/ns
E _{AS} ⁽⁴⁾	Single pulse avalanche energy	200	mJ
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

1. Current limited by the package

2. Pulse width limited by safe operating area

3. I_{SD} <3 A, di/dt \leq 150 A/µs, V_{DD} $\,\leq$ V_{(BR)DSS}, T_{J} $\,\leq$ T_{JMAX}

4. Starting $T_j = 25 \text{ °C}$, $I_D = 4 \text{ A}$, $V_{DD} = 30 \text{ V}$

Symbol	Parameter	Value	Unit
R _{thj-pcb}	Thermal resistance junction-PCB ⁽¹⁾ max	38	°C/W
R _{thj-pcb}	Thermal resistance junction-PCB ⁽²⁾ max	100	°C/W
T _I ⁽³⁾	Maximum lead temperature for soldering purpose typ	260	°C

1. When Mounted on FR-4 board with 1 inch² pad, 2 oz. of Cu. and t <10 sec.

2. When mounted on minimum recommended footprint

3. for 10 sec. 1.6 mm from case

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	60			v
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating, V _{DS} = Max rating @125 °C			1 10	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±16 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	1		2.8	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 1.5 A V _{GS} = 5 V, I _D = 1.5 A		0.07 0.085	0.10 0.12	Ω Ω

Table 4. On/off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9fs ⁽¹⁾	Forward transconductance	V _{DS} = 15 V, I _D =1.5 A		3		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0		340 63 30		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =48 V, I_D = 3 A V_{GS} =5 V (see Figure 15)		7 1.5 2.8	9	nC nC nC

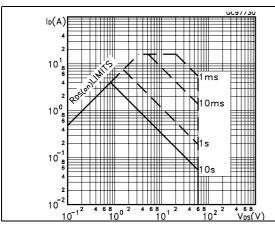
1. Pulsed: pulse duration=300µs, duty cycle 1.5%

Table 6.	Switching	times
----------	-----------	-------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time rise time	V _{DD} =30 V, I _D =1.5 A, R _G =4.7 Ω, V _{GS} =5 V (<i>see Figure 14</i>)		9 25		ns ns
t _{d(off)} t _f	Turn-off delay time fall time	V _{DD} =30 V, I _D =1.5 A, R _G =4.7 Ω, V _{GS} =5 V <i>(see Figure 14)</i>		20 10		ns ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current				4	Α
$I_{SDM}^{(1)}$	Source-drain current (pulsed)				16	А
V _{SD} ⁽²⁾	Forward on voltage	I_{SD} = 4 A, V_{GS} =0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 4 A, di/dt = 100 A/μs, V _{DD} =25 V, Tj=150 °C <i>(see Figure 16)</i>		50 88 3.5		ns nC A

 Table 7.
 Source drain diode


1. Pulse width limited by safe operating area.


2. Pulsed: pulse duration=300µs, duty cycle 1.5%

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area

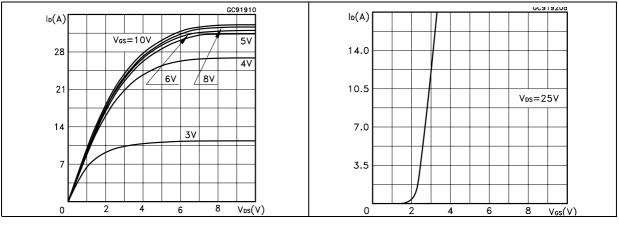
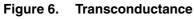



Figure 3.

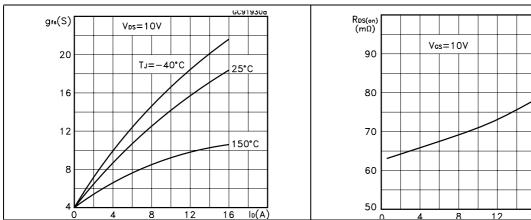
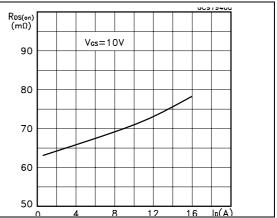
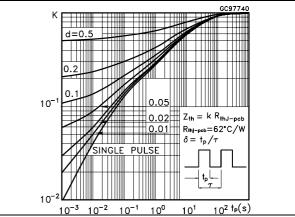
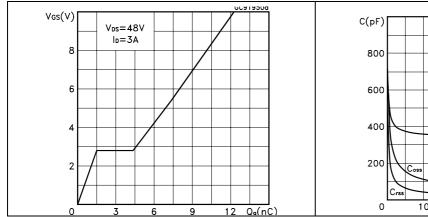
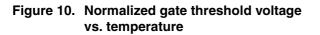




Figure 7. Static drain-source on resistance



57


Figure 5. **Transfer characteristics**

Thermal impedance

Figure 8. Gate charge vs. gate-source voltage Figure 9. Capacitance variations

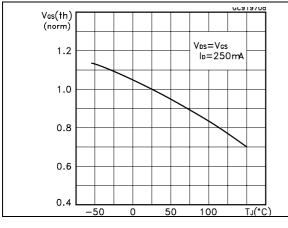
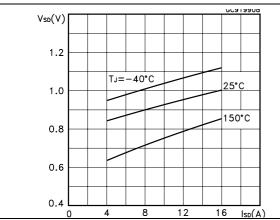



Figure 12. Source-drain diode forward characteristics

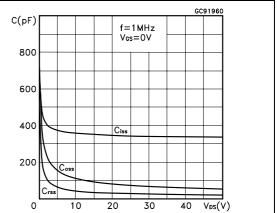


Figure 11. Normalized on resistance vs. temperature

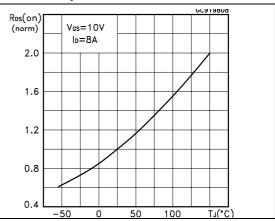
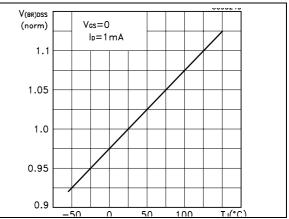



Figure 13. Normalized breakdown voltage vs. temperature

3 **Test circuit**

Figure 14. Switching times test circuit for resistive load

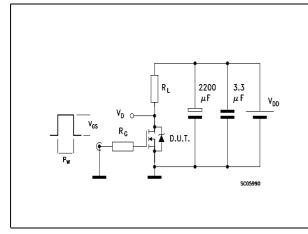
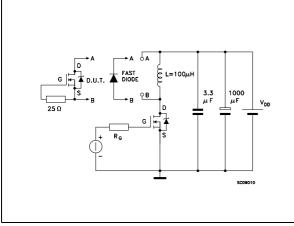



Figure 16. Test circuit for inductive load switching and diode recovery times

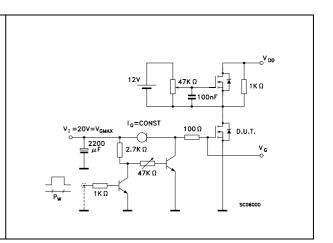


Figure 17. Unclamped Inductive load test circuit

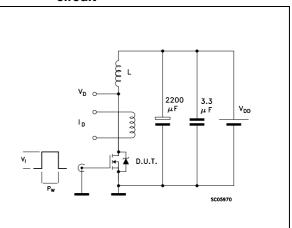
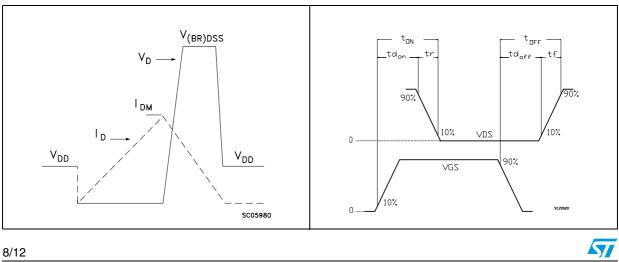
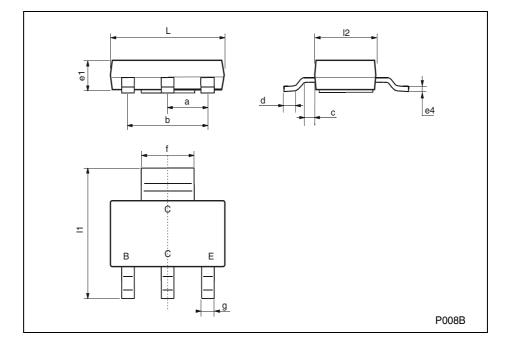



Figure 19. Switching time waveform

Figure 15. Gate charge test circuit


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

DIM.	mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
а	2.27	2.3	2.33	89.4	90.6	91.7
b	4.57	4.6	4.63	179.9	181.1	182.3
С	0.2	0.4	0.6	7.9	15.7	23.6
d	0.63	0.65	0.67	24.8	25.6	26.4
e1	1.5	1.6	1.7	59.1	63	66.9
e4			0.32			12.6
f	2.9	3	3.1	114.2	118.1	122.1
g	0.67	0.7	0.73	26.4	27.6	28.7
11	6.7	7	7.3	263.8	275.6	287.4
12	3.5	3.5	3.7	137.8	137.8	145.7
L	6.3	6.5	6.7	248	255.9	263.8

SOT-223 MECHANICAL DATA

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
21-Jun-2004	5	Complete version.
04-Oct-2006	6	New template, no content change.
01-Feb-2007	7	Typo mistake on Table 2.
12-Jun-2008	8	Corrected marking on Table 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

